• Title/Summary/Keyword: 3-D display system

Search Result 602, Processing Time 0.027 seconds

Graphic Deformation Algorithm for Haptic Interface System (촉각시스템을 위한 그래픽 변형 알고리즘)

  • Kang, Won-Chan;Jeong, Won-Tae;Kim, Young-Dong;Shin, Suck-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.67-71
    • /
    • 2002
  • In this paper, we propose a new deformable model based on non-linear elasticity, anisotropic behavior and the finite element method and developed the high-speed controller for haptic control. The proposed controller is based on the PCI/FPGA technology, which can calculate the real position and transmit the force data to device rapidly, The haptic system is composed of 6DOF force display device, high-speed controller and HIR library for 3D graphic deformation algorithm & haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. we demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we designed simulation program of force-reflecting, As the result of the experiment, we found that the controller has much higher resolution than some other controllers.

  • PDF

Implementation of Indoor Localization System

  • Ryu, Dong-Wan;Kim, Sun-Hyung;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.54-60
    • /
    • 2019
  • In this paper, a localization system for indoor objects is proposed. The proposed system consists of Beacons, LED Cells, Main Cell Controller (MCC), and Display. A Beacon is attached at each indoor object, and each LED cell has Beacon Scanner and VLC Transmitter. The Visual Light Communications (VLC) and Power Line Communications (PLC) methods are used to communicate the signals for localization of indoor objects. And the proposed system is designed, and implemented as a prototype. To certify that our propose d system can exactly localize a given indoor object, we take test for the implemented system as a p rototype. Here the location of the given indoor object is known. Test is done in two ways. The first is to check the operation of the detail of the system, and the second is the position recognition of i ndoor object. The second is the test of the implemented system to correctly detect the location of the indoor object with Beacon, while the object with Beacon is moved from location C to A. The experimental result shows that the system is exactly detect the moving locations. The system has the advantages of using previously installed power lines, and it does not need to use LAN lines or optical cables. The proposed system is usefully applied to indoor object localization area.

360-degree Video Streaming System for Large-scale Immersive Displays (대형 가상현실 공연장을 위한 360도 비디오 스트리밍 시스템)

  • Yeongil, Ryu;Kon Hyong, Kim;Andres, Cabrera;JoAnn, Kuchera-Morin;Sehun, Jeong;Eun-Seok, Ryu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.848-859
    • /
    • 2022
  • This paper presents a novel 360-degree video streaming system for large-scale immersive displays and its ongoing implementation. Recent VR systems aim to provide a service for a single viewer on HMD. However, the proposed 360-degree video streaming system enables multiple viewers to explore immersive contents on a large-scale immersive display. The proposed 360-degree video streaming system is being developed in 3 research phases, with the final goal of providing 6DoF. Currently, the phase 1: implementation of the 3DoF 360-degree video streaming system prototype is finished. The implemented prototype employs subpicture-based viewport-dependent streaming technique, and it achieved bit-rate saving of about 80% and decoding speed up of 543% compared to the conventional viewport-independent streaming technique. Additionally, this paper demonstrated the implemented prototype on UCSB AlloSphere, the large-scale instrument for immersive media art exhibition.

View-switchable High-Definition Multi-View Broadcasting over IP Networks (IP 네트워크에서 시점전환이 가능한 고화질 다시점 방송 시스템)

  • Lee, Seok-Hee;Lee, Ki-Young;Kim, Man-Bae;Han, Chung-Shin;Yoo, Ji-Sang;Kim, Jong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.4
    • /
    • pp.205-212
    • /
    • 2007
  • In this paper, we present a prototype of view-switchable high-definition (HD) multi-view video transmission system. One of the major bottlenecks for the multi-view broadcasting system has been the hardware cost and transmission bandwidth. The proposed system focuses on software-based design, transmission over IP multicast networks, and flexible system configuration to address aforementioned problems. In the proposed system, we implement software stereo HD multiplexing, demultipiexing and decoding, and take advantage of high-speed broadband convergence networks to deliver HD video in real-time. Moreover, the proposed system can be scalable and flexible in terms of the number of views. Furthermore, in order to display any multiview video on 3D display monitor, a face tracking system is integrated to our system. Therefore, users can watch the different stereoscopic video at its related locations.

3D Displays: Development and Validation of Prediction Function of Object Size Perception as a Function of Depth (3D 디스플레이: 깊이에 따른 대상의 크기지각 예측함수 개발 및 타당화)

  • Shin, Yoon-Ho;Li, Hyung-Chul O.;Kim, Shin-Woo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.400-410
    • /
    • 2012
  • In recent years, 3D displays are used in many media including 3D movies, TV, mobile phones, and PC games. Although 3D displays provide realistic viewing experience as compared with 2D displays, they also carry issues such as visual fatigue or size distortion. Focusing on the latter, we developed prediction function of object size perception as a function of object depth in 3D display. In Experiment 1, subjects observed 3D square of a fixed size of varying depth, and manipulated 2D square to make it as large as the 3D square. Conversely, in Experiment 2, subjects observed 2D square of a fixed size, and manipulated 3D square of varying depth to make it as large as the 2D square. In both Experiments 1 and 2, we found that size perception of 3D square linearly changed depending on depth of the square, and the linear relationship between depth and size was identical in both experiments. The predictive regression function, which predicts object size perception based on object depth, obtained in this research will be very useful in the creation of 3D media contents.

Optical System Design for Real-Time 3-Dimension Ophthalmoscope (실시간 3차원 검안경의 광학설계)

  • Lee, Soak-Hee;Yang, Yun-Sik;Choe, Oh-Mok;Sim, Sang-Hyun;Doo, Ha-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • The display technology on the retina is the key role in inspecting the condition of the patients. 2-dimensional retina image is widely used in the eye examination as of today. Recently, 3-dimensional retina image ones have been introduced to this area, but the quality of the image is not fully satisfied to the operator. For the purpose of developing 3-D retina imaging instrument, the optimization of a 3-D retina imaging system using Code-V tool was investigated in this thesis. He-Ne laser having the wavelength 632.8 nm was used to make a power source to detect the retina. Several lenses and mirrors installed on sledge which were developed to perform focus control on 3-D device were designed to make a beam focusing and direct line. Polygon scanner having 24 mirror facets and galvanometer making tilting movement were utilized to make a 2-D laser plane. Also, design of eye ball had been fulfilled to see the focus of the 2-D plane. Reflected ray from retina detected on the sensor array with the same path. All cognitive components were optimized for aberration correction in order to focus on retina. Results of optimization were compared to those of initial designed optics system. On the basis of above results, the result of third aberration has been corrected to stable values to the optical system. MTF evaluating the resolution of an image has been closely correlated to the diffraction limit and PSF indicating the strength distribution of an image has shown the SR value as 0.9998 having high performance. The possibility of new and powerful 3-D retina image instrument was verified by simulating each component of the instrument by Code-V.

  • PDF

Evaluation of usefulness of multi directional angles oblique scan method in optic nerve MRI (시각신경 MR 검사 시 다중 각도 스캔 기법의 유용성 평가)

  • Cho, Moo-Seong;Cho, Jae-Hwan;Bae, Jae-Yeong;Kim, Jeong-Soo;Kim, Kyeong-Keun
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.161-169
    • /
    • 2011
  • This research experimented on the change of the multiple colleague scan angle facing one scan object facet to many directions of the form of 3D about the visual angle nervous system forming the cubic distribution with the gradient magnetic field of the mri system and considered the existing basic angle oblique direction test coverage and comparison. MR system can freely select various pulse sequence and image slice. To oblique imaging for optic nerve viewing, we have studied the variation of scan angle between typical oblique scan method (sagittal-coronal plane) and multi directional angles oblique scan method (sagittal-coronal-axial plane) using gradient of MR system. In this study, the subjects of the experiment were normal adults in our country. As a result, we confirmed that multi directional angles oblique scan method can display anatomical information of more wider area than typical oblique scan method. In addition, to clearly display optic nerve, we also confirmed that image slice thickness and pulse sequence have effect on it.

Development of a Surface-Strain Measurement System Using the Image Processing Technique (화상처리법을 이용한 곡면변형률 측정 시스템의 개발)

  • 한상준;김영수;김형종;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.171-182
    • /
    • 1998
  • An automated surface-strain measuring system using the image processing technique is developed in the present study, which consists of the hardware to capture and to display digital images, and the software to calculate the 3D informations of grid points from two views. New or improved algorithms the mapping and establishing correspondence of grid points and elements, the camera calibration, and the subpixel measurement of grid points, are implemented. As an application of the present system the surface-strains of deformed blanks in the limitting dome height test, the square cup deep-drawing and punch stretching to obtain the forming limit diagram are measured. The results are compared with those obtained by conventional manual methods.

Personal Firewall Operating System Using API Hooking Modules (API 후킹 모듈을 이용한 개인 방화벽 운용 시스템)

  • Han, Jong-Gil;Kim, Jong-Chan;Ban, Kyeong-Jin;Kim, Chee-Yong;Kim, Eung-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.551-553
    • /
    • 2011
  • The popularization and development of 3D display makes common users easy to experience a solid 3D virtual reality, the demand for virtual reality contents are increasing. This paper proposes VR panorama system using vanishing point location-based depth map generation method. VR panorama using depth map gives an effect that makes users feel staying at real place and looking around nearby circumstances.

  • PDF

Development of a Portable Device based on PDA for Vibration Signal Analysis (PDA 기반 포터블 진동 신호 분석기 개발)

  • 김동준;박광호;기창두
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.179-184
    • /
    • 2002
  • In this study, we developed a portable device which can monitor and analyze vibration signals from machines. This system consists a PDA loading the program for vibration analysis and A/D board for vibration acquisition. A PDA is smaller than the palm of the hand, but it has a powerful computing ability as much as an IBM compatible PC with a Pentium 100MHz CPU. The A/D board developed in this study supports LAN interface using TCP/IP communication protocol. The application program for vibration analysis includes signal processing module, fault diagnosis module, data store module, and plot display module. MS visual embedded C++ 3.0 was used to developed the program.