• Title/Summary/Keyword: 3-D Surface-Strain

Search Result 143, Processing Time 0.021 seconds

Critical Parameters to Improve the Fatigue Properties in the High Carbon Steel Wires (고 강도 극 세선의 피로 특성 향상을 위한 특정 인자 제시)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • The governing parameters affecting the fatigue properties have been investigated experimentally in the high carbon steel wires with 0.94 wt.%C. In order to find the crucial factors, the advanced analysis techniques such as optical 3-D profiler, focused ion beam(FIB) and transmission electron microscope(TEM) were used. The two-type steel wires with different drawing strain were fabricated. The fatigue properties were measured by hunter rotating beam tester, specially designed for thin-sized steel wires. It was found that the fatigue properties of the steel wires with high drawing strain was higher than that with other wires because of low residual stress and high adhesion condition of brass coating layer.

Development of a Swing-Arm Type Polishing Machine for Large Optics (스윙암 방식을 이용한 대형 광학부품 연마가공기 개발)

  • Kim, Jin-Wook;Kim, Ock-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.3-7
    • /
    • 2008
  • A polishing machine adopting a new unique structural mechanism has been developed, named as a swing-arm type polishing machine. The mechanism is such that the tool path tracks on a spherical surface, of which the diameter is adjusted by setting up the machine mechanism properly. It has a strong benefit especially for polishing axis-symmetric concave mirror surfaces. The swing-arm type polishing machine with 5-axes has been designed in order to polish a concave mirror surface lip to diameter of 2 meters. The drawings are made using 3D CAD and strain-stress analysis has been done by finite element method. AC servo-motor has been used to move the swing arm and a operating software has been developed using a LapVIEW tool. Result of the test run was satisfactory which convinces the usefulness of the swing-arm type polishing machine.

  • PDF

Development of Rubber Sleeve for Reduction of End-mark in Cold Rolled Steel Sheet (고급강판용 엔드마크 감소를 위한 고무 슬리브의 개발)

  • Kim, Soon-Kyung;Kim, Dong-Keon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, a FEM analysis is undertaken of a rubber sleeve which is mounted onto a spreading mandrel so as to avoid marking the first wrappings of coils (known as the 'end-mark'), as occasionally occurs when a concentrated load is placed on the edge of a steel sheet, significantly reducing its quality. A commercial numerical package, ANSYS, was utilized to analyze the structural behavior of the rubber sleeve. In general, the strain of the sleeve increases as the thickness of the rubber layer (H) covering the tubes increases, thus also increasing the surface of the sleeve for a constant boundary condition, and decreasing the pitch (P) between each tube, resulting in an increase in the strain on the surface of the sleeve for all rubber thickness conditions tested here. In a comparison of two different materials, rubber and urethane, when H=3 mm and P=1.1D, the maximum total deformations in these cases are 0.12669 mm and 0.086623 mm, respectively.

Study on the Critical Current of Field Coil for High Temperature Superconducting Motor (고온초전도 전동기용 계자코일의 임계전류 연구)

  • Jo, Young-Sik;Sohn, Myung-Whan;Baik, Seung-Kyu;Kwon, Woon-Sik;Lee, Eon-Yong;Kwon, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.873-875
    • /
    • 2003
  • It is well known that $I_c$ (critical current) in HTS tape is more sensitive to $B{\perp}$ (magnetic field amplitude applied perpendicular to the tape surface) than to B// (magnetic field amplitude applied parallel to the tape surface). Thus, the magnitude of $B{\perp}$ at HTS tape is important to the design of HTS motor, because it determines the operating current. In addition, the $I_c$ of HTS field coil is determined by not only the $B{\perp}$ but also stress and strain condition at given operating temperature. Therefore, at the stage of field coil design, stress and strain conditions should be considered because when the HTS tape is handled, it is necessary to know the limiting values of loading, bending and twisting to avoid any damages. The $I_c$ of field coil is calculated by 3D analysis and measured through experiments considering the $B{\perp}$ and the margin of contacts loss.

  • PDF

A MEIS Study on Ge Eppitaxial Growth on Si(001) with dynamically supplied Atomic Hydrogen

  • Ha, Yong-Ho;Kahng, Se-Jong;Kim, Se-Hun;Kuk, Young;Kim, Hyung-Kyung;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.156-157
    • /
    • 1998
  • It is a diffcult and challenging pproblem to control the growth of eppitaxial films. Heteroeppitaxy is esppecially idfficult because of the lattice mismatch between sub-strate and depposited layers. This mismatch leads usually to a three dimensional(3D) island growth. But the use of surfactants such as As, Sb, and Bi can be beneficial in obtaining high quality heteroeppitaxial films. In this study medium energy ion scattering sppectroscoppy(MEIS) was used in order to reveal the growth mode of Ge on Si(001) and the strain of depposited film without and with dynamically supplied atomic hydrogen at the growth thempperature of 35$0^{\circ}C$. It was ppossible to control the growth mode from layer-by-layer followed by 3D island to layer-by-layer by controlling the hydrogen flux. In the absent of hydro-gen the film grows in the layer-by-layer mode within the critical thickness(about 3ML) and the 3D island formation is followed(Fig1). The 3D island formation is suppressed by introducing hydrogen resulting in layer-by-layer growth beyond the critical thickness(Fig2) We measured angular shift of blocking dipp in order to obtain the structural information on the thin films. In the ppressence of atomic hydrogen the blocking 야 is shifted toward higher scattering angle about 1。. That means the film is distorted tetragonally and strained therefore(Fig4) In other case the shift of blocking dipp at 3ML is almost same as pprevious case. But above the critical thickness the pposition of blocking dipp is similar to that of Si bulk(Fig3). It means the films is relaxed from the first layer. There is 4.2% lattice mismatch between Ge and Si. That mismatch results in about 2。 shift of blocking dipp. We measured about 1。 shift. This fact could be due to the intermixing of Ge and Si. This expperimental results are consistent with Vegard's law which says that the lattice constant of alloys is linear combination of the lattic constants of the ppure materials.

  • PDF

Finite Element Simulation of Laser-Generated Ultrasound and Interaction with Surface Breaking Cracks (유한요소법을 이용한 레이저 유도 초음파와 표면 균열과의 상호작용 모델링)

  • Jeong, Hyun-Jo;Park, Moon-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • A finite element method is used to simulate interaction of laser-based ultrasounds with surface breaking tracks in elastic media. The laser line source focused on the surface of semi-infinite medium is modeled as a shear dipole in 2-D plane strain finite elements. The shear dipole-finite clement model is found to give correct directivity patterns for generated longitudinal and shear waves. The interaction of surface waves with surface breaking cracks (2-D machined slot) is considered in two ways. Both the source and receiver are fixed with respect to the cracks in the first case, while the source is moving in another case. It is shown that the crack depth tested in the range of 0.3-5.0mm $({\lambda}_R/d=0.21{\sim}3.45)$ can be measured using the corner reflected waves produced by the fixed laser source. The moving laser source is found to cause a large amplitude change of reflected waves near crack, and the crack whose depth is one order lower than the wavelength ran be detected from this change.

Enhancement of Dimple Formability in Sheet Metals by 2-Step Forming (2중 성형에 의한 금속판재 딤플의 성형성 향상)

  • Kim, Hasung;Kim, Minsoo;Lee, Hyungyil;Kim, Naksoo;Kim, Dongchoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.841-849
    • /
    • 2013
  • In this study, a 2-step stamping model with an additional 1st stamping tool is proposed to reduce stamping flaws in the curved parts of a dimple in a nuclear fuel spacer grid. First, the strains of curved part of dimple are characterized via a comparison with strain solutions in pure bending. A reference 2D finite element (FE) model of 1-step stamping is then established, and the corresponding maximum strain is obtained. By varying the values of design variables of the 1st stamping tool in the 2-step stamping model, FE solutions are obtained to express the strain as a function of process variables, which provides the optimum values of process variables. Finally, applying these optimum values to a 3D FE model, we demonstrate the enhanced formability of the proposed 2-step stamping model.

Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy (판재의 이방성을 고려한 연성파단모델 개발)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2016
  • This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.

A Study on the Variation of Explosion Characteristics by the Block in Closed Vessel (밀폐 공간내 Block에 의한 폭발특성 변화에 관한 연구)

  • Oh Kyuhyung;Kim Jongbok;Lee Seungeun;Kim Hong;Lee Youngchul;Park Sungsu
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.23-28
    • /
    • 1999
  • Variation of explosion characteristics by the blocks in closed vessel was investigated to analyse the effect of the block volume(volume blockage) and the surface area of the blocks(ratio of block surface area to vessel volume). Volume and surface area of blocks in explosion vessel were changed by the combination of blocks. The volume of explosion vessels was 270 liter, and the LPG-air or NG-air mixtures were ignited by the electric spark. Explosion pressure was measured with the strain type pressure transducer. From the experimental results, explosion pressure was decreased by the increase of the volume blockage and the block surface area. And the decrease of explosion pressure was more affected by the volume blockage than the surface area.

  • PDF

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.