This paper presents a new technique to implement the real-time recognition for shapes and model number of parts based on an active vision approach. The main focus of this paper is to apply a technique of 3D object recognition for non-contacting inspection of the shape and the external form state of precision parts based on the pattern recognition. In the field of computer vision, there have been many kinds of object recognition approaches. And most of these approaches focus on a method of recognition using a given input image (passive vision). It is, however, hard to recognize an object from model objects that have similar aspects each other. Recently, it has been perceived that an active vision is one of hopeful approaches to realize a robust object recognition system. The performance is illustrated by experiment for several parts and models.
본 논문에서는 3차원 얼굴인식을 위한 방사 기저 함수 신경망 기반의 새로운 전역적 형태 특징과 그 특징을 추출하는 방법을 제안한다. 방사 기저 함수 신경망은 방사 기저 함수들의 가중합으로써, 얼굴 형태 정보의 비선형성을 방사 기저 함수의 선형합으로 잘 표현한다. 이 논문에서는 얼굴의 가로 방향 프로파일을 학습된 방사 기저 함수 신경망에 적용시켰을 때 생성되는 가증치를 새로운 전역적 형태 특징으로 제안한다. 제안하는 전역적 형태 특징의 경우 국소적 특징의 특성을 가지며, 일반적인 전역적 특징의 특성인 특징의 복잡도도 감소시킨다. 100명의 데이터베이스 영상과 100명에 대한 서로 다른 3개의 포즈를 포함하는 300개의 테스트 영상을 이용한 실험에서 제안하는 전역적 형태 특징과 은닉 마르코프 모델을 이용한 특징 비교를 통해서 94.7%의 인식률을 얻었다.
In this paper, we implemented the computer vision platform design with MEAN Stack through Raspberry PI 2 model which is an open source platform. we experimented the face recognition, temperature and humidity sensor data logging with WiFi communication under Raspberry Pi 2 model. Especially we directly made the shape of platform with 3D printing design. In this paper, we used the face recognition algorithm with OpenCV software through haarcascade feature extraction machine learning algorithm, and extended the functionality of wireless communication function ability with Bluetooth technology for the purpose of making Android Mobile devices interface. And therefore we implemented the functions of the vision platform for identifying the face recognition characteristics of scanning with PI camera with gathering the temperature and humidity sensor data under IoT environment. and made the vision platform with 3D printing technology. Especially we used MongoDB for developing the performance of vision platform because the MongoDB is more akin to working with objects in a programming language than what we know of as a database. Afterwards, we would enhance the performance of vision platform for clouding functionalities.
This paper describes a research work of developing a computer-aided design of product with bending and piercing for progressive working. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, strip layout and die layout module. Based on knowledge-based rules, the system is designed by considering several factors such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, and availability of press. Strip layout drawing generated by the piercing processes with punch profiles divided into for external area is simulated in 3-D graphic forms, including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacturer for progressive working of electronic products to be more efficient in this field.
Human activity recognition using depth information is an emerging and challenging technology in computer vision due to its considerable attention by many practical applications such as smart home/office system, personal health care and 3D video games. This paper presents a novel framework of 3D human body detection, tracking and recognition from depth video sequences using spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined to extract human silhouette by considering spatial continuity and constraints of human motion information. While, frame differentiation is used to track human movements. Features extraction mechanism consists of spatial depth shape features and temporal joints features are used to improve classification performance. Both of these features are fused together to recognize different activities using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two challenging depth video datasets. Moreover, our system has significant abilities to handle subject's body parts rotation and body parts missing which provide major contributions in human activity recognition.
건설 산업의 숙련공 부족현상, 고령화 문제, 임금 상승으로 인한 채산성 악화, 품질의 균일성 및 안전성 확보 등은 향후 국내 건설 산업이 해결해야 할 당면 과제이다. 이러한 문제를 해결하기 위한 하나의 기술적인 접근방법으로써 국${\cdot}$내외에서는 건설 자동화에 대한 연구가 활발히 진행 중에 있으며, 최근 국내에서는 토공사 작업의 안전성을 확보하기 위해 백호(backhoe)를 대상으로 지능형 굴삭로봇을 개발하기 위한 연구가 진행 중에 있다. 본 연구에서는 지능형 굴삭 로봇을 개발하기 위해 필수적으로 요구되는 기반기술 중 실시간 지반형상 인식 및 토공량 자동산출을 위한 최신 요소기술을 분석하고 최적 대안을 제시하였으며, 이를 위해 국내외 문헌고찰 및 다양한 최신요소 기술의 분석을 통해 지반형상을 실시간으로 인식할 수 있는 5가지 요소기술들에 대한 분석을 선행하였다. 또한 로컬영역의 실시간 지반형상 인식 및 토공량 자동 산출을 위해 3차원 모델링 장비가 갖추어야할 주요 고려요소를 분석하고, AHP 기법을 이용하여 주요 고려요소별 가중치를 산정하고 각 요소기술별 선호지수를 도출하였다. 도출된 선호지수를 바탕으로 최신 요소기술 간의 우선순위를 선정함으로써 3차원 모델링 장비에 적용 가능한 최적 대안을 선정하였다.
본 논문은 3차원 얼굴영상으로부터 얼굴의 구성 요소 중의 하나인 코의 종단면과 횡단면을 이용한 특징값과 얼굴의 다를 구성 요소들로부터 구해진 특징값을 이용하여 얼굴을 인식하는 알고리듬을 제안한다. 객체와 배경을 분리하여 얼굴을 추출 및 얼굴의 최고점인 코끝을 찾은 후, 3차원 영상으로부터 얼굴의 주요 특징영역인 코 정보와 얼굴의 종단면 및 횡단면의 정보를 이용하여 회전 보상 전, 후의 특징값을 구한다. 코의 최고점, 코와 이마 사이의 미간점, 코의 밑점, 그리고 코의 앙쪽 끝점을 탐색하여 코의 종단면과 횡단면을 기준으로 한 면적, 깊이, 각도, 체적, 그리고 눈과 입의 간격을 특징값으로 사용하였다. 제안된 방법을 이용한 유사도 비교는 입력과 데이타 베이스에 대하여 각각 두 개의 깊이 데이타에 대해 유클리드 거리를 사용하였으며, 실험결과 임계 순위 값 5위 이내의 인식률이 95.5%로 나타났다.
본 논문에서는 증강현실을 위한 히스토그램 기반의 손 인식 기법을 제안한다. 손동작 인식은 사용자와 컴퓨터 사이의 친숙한 상호작용을 가능하게 한다. 하지만, 비젼 기반의 손동작 인식은 복잡한 손의 형태로 인한 관찰 방향 변화에 따른 입력 영상의 다양함으로 인식에 어려움이 따른다. 따라서 본 논문에서는 손의 형태적인 특징을 이용한 새로운 모델을 제안한다. 제안하는 기법에서 손 인식은 카메라로부터 획득한 영상에서 손 영역을 분리하는 부분과 인식하는 부분으로 구성된다. 카메라로부터 획득한 영상에서 배정을 제거하고 피부색 정보를 이용하여 손 영역을 분리한다. 다음으로 히스토그램을 이용하여 손의 특징점을 구하여 손의 형태를 계산한다. 마지막으로 판별된 손인식 정보를 이용하여 3차원 객체를 제어하는 증강현실 시스템을 구현하였다. 실험을 통해 제안한 기법의 구현 속도가 빠르고 인식률도 91.7%로 비교적 높음을 확인하였다.
본 논문에서는 3차원 정면 얼굴 영상으로부터 추출된 프로파일(profile) 영상을 깊이 정보가 반영된 가중치 하우스도르프 거리(weighted hausdorff distance-WHD)를 이용하여 두 영상을 비교하는 인식 알고리즘을 제안한다. 3차원 얼굴 영상은 2차원과 달리, 깊이 정보를 가지고 있으므로 사람 얼굴의 프로파일 영상을 보다 정확하게 그리고 다양한 얼굴 위치에서 추출되어 질 수 있다. 코는 얼굴에서 가장 돌출된 형상을 가지고 있으므로, 3차원 데이터의 깊이 값을 평균을 이용한 반복 선택 방법을 사용하여 코의 정점 위치를 찾는다. 이를 기준점으로 수직성분들의 깊이 값을 2차원 평면으로 나타내면 프로파일 영상이 추출된다. 입력 영상과 데이터베이스 영상과의 유사도 비교를 위해, 깊이정보를 가중치로 사용한 WHD방법으로서 두 프로파일 영상의 거리비교는 Ll을 이용하여 비교하였다. 제안된 방법으로, 인식률은 5위 이내가 94.3%의 인식률을 나타내었다.
본 논문에서는 계층적 특징 학습을 이용하여 물체의 컬러 영상과 깊이 영상으로부터 해당 물체가 속한 범주와 개체, 그리고 다양한 속성들을 효과적으로 인식할 수 있는 시스템을 제안한다. 본 시스템의 전처리 단계에서는 물체의 깊이 영상을 물체의 모양 정보를 좀 더 효과적으로 표현할 수 있는 표면 법선 벡터 데이터로 변환하고, 특징 학습 단계에서는 물체의 컬러 영상과 표면 법선 벡터 데이터로부터 두 단계에 걸쳐 패치 단위 특징과 이미지 단위의 특징을 추출해낸다. 그리고 추출된 특징 벡터들과 SVM 학습 알고리즘을 이용하여 각기 독립적인 다수의 분류 모델들을 학습한다. 미국 워싱턴 대학의 RGB-D 물체 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안하는 물체 인식 시스템의 높은 성능을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.