• Title/Summary/Keyword: 3-D Segmentation

Search Result 451, Processing Time 0.031 seconds

Comparison of Analysis Results According to Heterogeneous or Homogeneous Model for CT-based Focused Ultrasound Simulation (CT 영상 기반 집속 초음파 시뮬레이션 모델의 불균질 물성과 균질 물성에 따른 모델 분석 결과 비교)

  • Hyeon, Seo;Eun-Hee, Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.369-374
    • /
    • 2022
  • Purpose: Focused ultrasound is an emerging technology for treating the brain locally in a noninvasive manner. In this study, we have investigated the influence of skull properties on simulating transcranial pressure field. Methods: A 3D computational model of transcranial focused ultrasound was constructed using female and male CT data to solve for intracranial pressure. For heterogeneous model, the acoustic properties were calculated from CT Hounsfield units based on a porosity. The homogeneous model assigned constant acoustic properties for the single-layered skull. Results: A computational model was validated against empirical data. The homogeneous models were then compared with the heterogeneous model, resulted in 10.87% and 7.19% differences in peak pressure for female and male models respectively. For the focal volume, homogeneous model demonstrated more than 94% overlap compared with the heterogeneous model. Conclusion: Homogeneous model can be constructed using MR images that are commonly used for the segmentation of the skull. We propose the possibility of the homogeneous model for the simulating transcranial pressure field owing to comparable focal volume between homogeneous model and heterogeneous model.

Real-time moving object tracking and distance measurement system using stereo camera (스테레오 카메라를 이용한 이동객체의 실시간 추적과 거리 측정 시스템)

  • Lee, Dong-Seok;Lee, Dong-Wook;Kim, Su-Dong;Kim, Tae-June;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.366-377
    • /
    • 2009
  • In this paper, we implement the real-time system which extracts 3-dimensional coordinates from right and left images captured by a stereo camera and provides users with reality through a virtual space operated by the 3-dimensional coordinates. In general, all pixels in correspondence region are compared for the disparity estimation. However, for a real time process, the central coordinates of the correspondence region are only used in the proposed algorithm. In the implemented system, 3D coordinates are obtained by using the depth information derived from the estimated disparity and we set user's hand as a region of interest(ROI). After user's hand is detected as the ROI, the system keeps tracking a hand's movement and generates a virtual space that is controled by the hand. Experimental results show that the implemented system could estimate the disparity in real -time and gave the mean-error less than 0.68cm within a range of distance, 1.5m. Also It had more than 90% accuracy in the hand recognition.

Better Foreground Segmentation for 3D Face Reconstruction using Graph Cuts (3차원 얼굴 복원을 위한 그래프 컷 기반의 전경 물체 추출 방법)

  • Park, An-Jin;Hong, Kwang-Jin;Jung, Kee-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.459-464
    • /
    • 2007
  • 영상기반의 3자원 복원(reconstruction)에 대한 연구가 컴퓨터 성능의 발전과 다양한 영상기반의 복원 알고리즘의 연구로 인해 최근 좋은 결과를 보이고 있으나, 이는 얼굴영역과 같은 목적이 되는 영역이 각 입력영상으로부터 미리 정확하게 추출되어 있다고 가정하기 때문이다. 일반적으로 목적이 되는 영역을 추출하기 위해 차영상이 많이 이용되고 있지만 차영상은 잡음과 구멍(hole)과 같은 오 추출된 영역이 발생하기 때문에 목적이 되는 영역을 3차원으로 복원을 할 때 심각한 오류를 초래할 수 있다. 전경물체(목적이 되는 영역)을 정확하게 추출하기 위해 최근 그래프 컷(graph cut)을 이용한 방법이 다양하게 시도되고 있다. 그래프 컷은 데이터 항(data term)과 스무드 항(smooth term)으로 구성된 에너지 함수를 전역적으로 최소화하는 방법으로 여러 공학적 문제에서 좋은 결과를 보이고 있지만, 에너지 함수의 데이터 항을 설정할 때 필요한 사전정보를 자동으로 얻기가 어렵다. 스테레오 비전의 깊이 정보가 최근 전경 물체 추출을 위한 사전정보로 많이 이용되고 있고 그들의 실험환경에서는 좋은 결과를 보이지만, 3차원 얼굴 복원에서 얼굴의 대부분이 동질의 영역을 가지고 있기 때문에 깊이 정보를 구하기 어려워 정확한 사전정보를 구하기가 어렵다. 본 논문에서는 3차원 얼굴 복원을 효과적으로 하기 위한 그래프 컷 기반의 전경 물체 추출 방법을 제안한다. 에너지 함수의 데이터 항을 설정하기 위해 전경 물체에 대한 사전정보를 추출해야 하며, 이를 위해 차영상을 이용하여 대략적인 전경 물체 추출하고, 사전정보에 대한 오류를 줄이기 위해 잡음과 그림자 영역을 제거한다. 잡음과 그림자 영역을 제거하면 구멍이 발생하거나 실루엣이 손상되는 문제가 발생한다. 손상된 정보는 근접한 픽셀이 유사하지 않을 때 낮은 비용을 할당하는 에너지 함수의 스무드(smooth) 항에 의해 에지 정보를 기반으로 채워진다. 결론적으로 제안된 방법은 스무드 항과 대략적으로 설정된 데이터 항으로 구성된 에너지 함수를 그래프 컷으로 전역적으로 최소화함으로써 더욱 정확하게 목적이 되는 영역을 추출할 수 있다.

  • PDF

Frame-rate Up-conversion using Hierarchical Adaptive Search and Bi-directional Motion Estimation (계층적 적응적 탐색과 양방향 움직임 예측을 이용한 프레임율 증가 방법)

  • Min, Kyung-Yeon;Park, Sea-Nae;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.28-36
    • /
    • 2009
  • In this paper, we propose a frame-rate up-conversion method for temporal quality enhancement. The proposed method adaptively changes search range during hierarchical motion estimation and reconstructs hole regions using the proposed bi-direction prediction and linear interpolation. In order to alleviate errors due to inaccurate motion vector estimation, search range is adaptively changed based on reliability and for more accurate, motion estimation is performed in descending order of block variance. After segmentation of background and object regions, for filling hole regions, the pixel values of background regions are reconstructed using linear interpolation and those of object regions are compensated based on the proposed hi-directional prediction. The proposed algorithm is evaluated in terms of PSNR with original uncompressed sequences. Experimental results show that the proposed algorithm is better than conventional methods by around 2dB, and blocky artifacts and blur artifacts are significantly diminished.

Comparison Analysis of Four Face Swapping Models for Interactive Media Platform COX (인터랙티브 미디어 플랫폼 콕스에 제공될 4가지 얼굴 변형 기술의 비교분석)

  • Jeon, Ho-Beom;Ko, Hyun-kwan;Lee, Seon-Gyeong;Song, Bok-Deuk;Kim, Chae-Kyu;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.535-546
    • /
    • 2019
  • Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.

Association of Dietary Quality with Subjective Health-Related Perception and Chronic Diseases According to Age Segmentation of Korean Elderly (한국 노인의 연령 세분화에 따른 식사의 질과 주관적 건강 관련 인식 및 만성질환의 연관성)

  • Lee, Sojeong;Lee, Seungmin
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.5
    • /
    • pp.363-381
    • /
    • 2021
  • Objectives: This study examined the Korean elderly's dietary intake status, subjective health-related perception and chronic disease prevalence among age groups. Associations of dietary quality with subjective health-related perception and chronic diseases were also examined. Methods: Based on data from the 7th National Health and Nutrition Examination Survey, a total of 3,231 elderly were selected and categorized into 4 age groups of '65 ~ 69', '70 ~ 74', '75 ~ 79' and 'over 80'. Nutrient intakes, proportions of those with insufficient nutrient intakes, Korean Healthy Eating Index (KHEI), some subjective health-related perceptions and prevalence of major chronic diseases were compared according to the age groups. Differences in the subjective health-related perceptions and odds ratios of the chronic diseases according to the quartile levels of KHEI within the same age group were analyzed. Results: With the increase of age, several nutrient intakes (P < 0.001) and KHEI scores significantly decreased (P < 0.01). In women, activity restriction increased (P < 0.05), and EQ-5D score decreased with age (P < 0.001). Prevalence of hypertension (P < 0.0001), hypercholesterolemia (P < 0.05) and anemia (P < 0.01) significantly increased, while hypertriglyceridemia (P < 0.01) significantly decreased only in men. Obesity prevalence decreased, while underweight prevalence increased (P < 0.05). Subjective health status, EQ-5D score and PHQ-9 score significantly improved as KHEI score increased in certain age groups of women (P < 0.05). Odds ratio of hypercholesterolemia significantly increased with the increase of KHEI score in 65 ~ 69-year-old women. However, hypertension and anemia significantly decreased with the increase of KHEI score in 75 ~ 79-year-old women (P < 0.05). Conclusions: The study findings suggest that nutrition management and policy for the Korean elderly need to apply a segmented age standard that can better reflect their dynamic characteristics.

Curved Feature Modeling and Accuracy Analysis Using Point Cloud Data (점군집 데이터를 이용한 곡면객체 모델링 및 정확도 분석)

  • Lee, Dae Geon;Yoo, Eun Jin;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • LiDAR data processing steps include noise removal, filtering, classification, segmentation, shape recognition, modeling, and quality assessment. This paper focuses on modeling and accuracy evaluation of 3D objects with curved surfaces. The appropriate modeling functions were determined by analyzing surface patch shape. Existing methods for modeling curved surface features require linearization, initial approximation, and iteration of the non-linear functions. However, proposed method could directly estimate the unknown parameters of the modeling functions. The results demonstrate feasibility of the proposed method. The proposed method was applied to the simulated and real building data of hemi-spherical and semi-cylindrical surfaces. The parameters and accuracy of the modeling functions were estimated. It is expected that the proposed method would contribute to automatic modeling of various objects.

Aeromagnetic Pre-processing Software Based on Graphic User Interface, KMagLevellingTM (그래픽 사용자 인터페이스 기반 항공자력탐사 전처리 S/W, KMagLevellingTM)

  • Ko, Kwang-Beom;Jung, Sang-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • Aeromagnetic survey generally require much more pre-processing steps than that of common land survey due to several complex and cumbersome steps included in pre-processing stage. Therefore it is desirable to use specific processing tool especially based on graphic user interface. For this purpose, aeromagnetic pre-processing software based on graphic user interface under the Windows environment, called $KMagLevelling^{TM}$ was developed and briefly introduced. In an aspect of its user-friendliness and originality, three noticeable features of $KMagLevelling^{TM}$ are summarized as the following (1) function of representation and handling for large amount of aeromagnetic data set as a visualization in the form of flight-path (2) function of selective exclusion of unwanted data by using survey area information expressed as polygon, and (3) function of selective removal processing for the irregular flight-path data acquired within the entire survey area by implementing the segmentation of flight-path technique.

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.

Mapping Man-Made Levee Line Using LiDAR Data and Aerial Orthoimage (라이다 데이터와 항공 정사영상을 활용한 인공 제방선 지도화)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Chung, Youn-In;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.84-93
    • /
    • 2011
  • Levee line mapping is critical to the protection of environments in river zones, the prevention of river flood and the development of river zones. Use of the remote sensing data such as LiDAR and aerial orthoimage is efficient for river mapping due to their accessibility and higher accuracy in horizontal and vertical direction. Airborne laser scanning (LiDAR) has been used for river zone mapping due to its ability to penetrate shallow water and its high vertical accuracy. Use of image source is also efficient for extraction of features by analysis of its image source. Therefore, aerial orthoimage also have been used for river zone mapping tasks due to its image source and its higher accuracy in horizontal direction. Due to these advantages, in this paper, research on three dimensional levee line mapping is implemented using LiDAR and aerial orthoimage separately. Accuracy measurement is implemented for both extracted lines generated by each data using the ground truths and statistical comparison is implemented between two measurement results. Statistical results show that the generated 3D levee line using LiDAR data has higher accuracy than the generated 3D levee line using aerial orthoimage in horizontal direction and vertical direction.