• Title/Summary/Keyword: 3-D Patch

Search Result 555, Processing Time 0.026 seconds

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch (개구 결합된 십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나)

  • 박기동;정문숙;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.479-488
    • /
    • 2003
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch 130 by aperture in the ground plane of microstrip line is proposed as radiation element of antenna which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and - 10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And 3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

A Study on the Cylindrical Microstrip Antenna for ISM Band Applications (ISM 대역용 원통형 마이크로스트립 안테나에 관한 연구)

  • Jeong, Don-Ki;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.326-332
    • /
    • 2006
  • In this study, the antenna was proposed for the omni-directional characteristic in horizontal plane. Therefore we proposed $1{\times}4$ microstrip patch array on cylindrical surface for studying microstrip patch antennas. This antenna is designed for 2.45GHz ISM band and applications. This antenna can be applied to the base station of wireless microphone and access point of wireless LAN. The length and width of the patch antenna and the width of the feed line were calculated by using the theory of microstrip patch antenna, by using the both the 2.5D and 3D EM simulators the optimized antenna characteristics are obtained. From result of measured, antenna's impedance of coaxial waveguide port was 51.915-j3.688 ${\Omega}$, the return loss was -31dB and VSWR was 1.081.

  • PDF

New Metamaterial Structure for High Gain Metamaterial Patch Antenna (고 이득 메타매터리얼 패치안테나를 위한 새로운 메타매터리얼 구조)

  • Lee, Nam-Ki;Yang, Seung-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.25-30
    • /
    • 2010
  • Our new metamaterial structure patch antenna improves the gain of ordinary metamaterial patch antenna. The structure of new metamaterial cover is made by removing central $7{\times}7$ lattices out of $9{\times}9$ lattices. Also, the metamaterial covers can be easily fabricated using ordinary substrates. Measurement results of a patch antenna, a metamaterial patch antenna and our proposed metamaterial patch antenna show that the gain of the proposed metamaterial patch antenna is about 3dB higher than that of the ordinary metamaterial patch antenna.

Gain Enhancement of a Circularly-Polarized Patch Antenna with a Double-Layered Superstrate for Wireless LAN (무선 LAN용 원형편파 패치안테나에 이중 적층 상부덮개를 적용한 이득 향상)

  • Lee, Sangrok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2427-2433
    • /
    • 2015
  • A high-gain circularly-polarized patch antenna with a double-layered superstrate is proposed operating at a wireless LAN frequency. A superstrate has an array of metallic periodic unit cells and is located above the patch antenna with an air-gap. The designed antenna has a high gain of over 9.59dBi, which is the gain enhancement of 6.48dB compared to the patch antenna without superstrate. And it has a low axial ratio of under 3dB, so that it maintains the circular polarization of the patch antenna. The optimum air-gap height at the superstrate of $4{\times}4$ arrays is 25mm, which is equivalent to about $0.2{\lambda}$ at the frequency of 2.45GHz. We confirmed that the double-layered stacking of a superstrate increases the effective aperture size and hence it leads to enhance a gain of the patch antenna.

Miniaturization of Microstrip Antenna using Iris (Iris를 이용한 마이크로스트립 안테나의 소형화)

  • Seo Jeong-Sik;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.922-930
    • /
    • 2004
  • In this paper, the 3-dimensional microstrip antenna, where the lis is attached near the patch, on the pound and both patch and ground in zigzag, is designed and fabricated to miniaturize size of antenna. The path of surface current and permittivity in patch are increased because of attached Iris near the patch, on the pound and patch and found. In particula., the maximum size reduction effect among the three-type of $79.1\%$(17 mm$\times$90 mm) was presented in zigzag-type compared with the rectangular microstrip patch antenna(MPA) with a height of 9 mm at the resonant frequency of 1.575 GHz. The gain showed -1.15 dBd, -10 dB bandwidth showed 6.2$\%$(98 MHz), and HPBW of E-plane showed $154^{\circ}$. As that result we could confirm that the 3-dimensional structure with attached Irises is the proper form for the miniaturization of microstrip antenna.

Skin Safety Evaluation of Pectin Lyase-modified Red Ginseng Extract (GS-E3D) (홍삼가수분해농축액(GS-E3D)의 피부 안전성 평가)

  • Pyo, Mi Kyung;Lee, Gyeong Hee;Cha, Seon Woo;Park, Ki Young;Lee, Ki Moo
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.246-254
    • /
    • 2018
  • Pectin lyase-modified red ginseng extract (GS-E3D) is a newly developed ginsenoside Rd-enriched ginseng extract. This study was designed to investigate the skin safety of GS-E3D. Single oral toxicity, single dermal toxicity, bovine corneal opacity and permeability (BCOP) assay, skin irritation test with $SkinEthic^{TM}$ human epidermis model, skin sensitization local lymph node assay, and human patch test, were examined. The oral and dermal $LD_{50}$ value of GS-E3D was over 2,000 mg/kg in rats. GS-E3D was identified as a non-irritant to skin in BCOP assay, human epidermis models, and patch test from the 32 human subjects. The skin sensitization potential of GS-E3D was less than 25% in local lymph node assay. These results indicate that GS-E3D can be used as a safe ingredient without adverse effects in various skin care products.

Analysis Microstrip Patch Antenna of MIMO Structure (MIMO 구조의 마이크로스트립 패치 안테나 분석)

  • Kim, Sun-Woong;Park, Jung-Jin;Choi, Dong-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.944-949
    • /
    • 2015
  • This study proposed a patch antenna with a MIMO structure which is applicable for wireless communication equipment by combining a single patch antenna with a multi port. The proposed MIMO patch antenna was designed through the TRF-45 substrate with a relative permittivity of 4.5, loss tangent equal to 0.0035 and dielectric high of 1.6 mm, and the center frequency of the antenna was 2.45 GHz in the ISM (Industrial Scientific and Medical) band. The proposed MIMO patch antenna had a 500 MHz bandwidth from 2.16 ~ 2.66 GHz and 24.1% fractional bandwidth. The return loss and VSWR were -62.05 dB, 1.01 at the ISM bandwidth of 2.45 GHz. The Wibro band of 2.3 GHz was -17.43 dB, 1.33, the WiFi band of 2.4 GHz was -31.89 dB, 1.05, and the WiMax band of 2.5 GHz was -36.47 dB, 1.03. The radiation patterns included in the bandwidth were directional, and the WiBro band of 2.3 GHzhad a gain of 4.22 dBi, the WiFi band of 2.4 GHz had a gain of 4.12 dBi, the ISM band of 2.45 GHz had a gain of 4.06dBi, and the WiMax band of 2.5 GHz had a gain of 3.9 6dBi.

3-Dimensinal Microstrip Patch Antenna for Miniaturization (소형화를 위한 3차원 구조마이크로스트립 패치 안테나)

  • 송무하;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.157-167
    • /
    • 2003
  • In this paper, to reduce the resonant length of patch, microstrip patch antenna of linear polarization which is suppressed at two radiation edges is designed and fabricated at the frequency of 1.575 GHz. The result is like that the resonant length of patch is 45 mm and the length reduction effect is 43.8 % when it is compared with that(80 mm) of plane type. The gain is 4.4 dBd and -3 dB beamwidths are 112$^{\circ}$ and 66$^{\circ}$ in the E-plane and H-plane, respectively. Also, to reduce the size of patch, microstrip patch antennas those are suppressed at four radiating comers are designed and fabricated at the same frequency in the linear and circular polarization, respectively. For linear polarization, at the 1.2 of width/length(W/L) ratio, the patch area is 53 mm $\times$ 63.6 mm and the size reduction effect is 56.1 % when compared with that(80 mm $\times$ 96 mm) of plane type. The gain is 4.3 dBd and the -3 dB beamwidths are 120$^{\circ}$ and 78$^{\circ}$ in the E-plane and H-plane, respectively. For circular polarization, the patch size(54.2 mm $\times$ 61.5 mm) is reduced by 47.2 % than that(76 mm $\times$ 83 mm) of plane type. -3 dB beamwidth of horizontal polarization in the z-x plane and vortical polarization in the y-z plane are 108$^{\circ}$ and 93$^{\circ}$, respectively and this means the increasement in both planes by 52$^{\circ}$ and 27$^{\circ}$ than those of plane type. The maximum gain is 2.5 dBd in the horizontal polarization in the z-x plane. Axial ratio is 1.5 dB at 1.575 GHz and the 2 dB axial ratio bandwidth(ARBW) is 20 MHz(1.3 %).

Design and Manufacture of Active Antenna System using LNA for Wireless LAN (LNA를 이용한 무선 랜용 능동안테나 시스템 설계 및 제작)

  • Kim, Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1744-1751
    • /
    • 2006
  • In this paper shows the Designed and Manufactured active antenna for wireless LAN that is consisted of 5.5GHz band local LNA and Microstrip Patch Antenna. LNA improved noise special quality using NEC company's NE3210S01 and Micnstrip Patch Antenna designed to have omnidirectional characteristic. Designed $1{\times}2$ Microstrip Patch Antenna to have the gain of about 8.3[dBi], the input reflection loss -32[dB], VSWR showed 1.132, and the LNA gain 15[dB], input-output reflection loss was showed the characterstic of -20[dB].

Design of Tx 3OGHz/ Rx 20GHz dual feeding circular polarized patch antenna (송신 30GHz/ 수신 20GHz 이중급전 원형편파 패치 안테나 설계)

  • Kim, Sung-Nam;Oh, Min-Seok;Cheon, Young-Min;Choi, Jae-Ick;Pyo, Cheol-Sig;Lee, Song-Moon;Cheon, Chang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2058-2060
    • /
    • 2004
  • In this paper, circular polarized antennas of Tx 30GHz and Rx 20GHz are implemented in LTCC process. Tx antenna has a circular patch structure and Rx antenna has a ring patch structure. The feeding line of Tx antenna is placed in the center hole of Rx ring patch antenna which is printed under Tx circular patch antenna layer. It makes antenna size smaller. Tx antenna's return loss in under -10dB level from 30GHz to 31GHz and Rx antenna is under -10 dB from 20GHz to 21GHz. The isolation between two antennas is less than -20dB. Axial ratio is less than 3dB though out each band.

  • PDF