• Title/Summary/Keyword: 3-D Panel Method

Search Result 154, Processing Time 0.027 seconds

The role of functional materials and inkjet printing technology for printable electronics (프린팅 전자소자용 잉크젯 기술과 소재)

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.446-450
    • /
    • 2007
  • It is strongly expected that inkjet printing method will be play and important role on printable electronics such as 3D integration of embedded ceramic devices(capacitor, resistor, inductor and electrode or circuit), Si-TFT and organic TFT including display C/F, RFID, FPCB, and etc. A inkjet printing method had been center of attention to strengthen the competitiveness of flat panel display on market and to open the new world of manufacturing process of printable electronics. We will survey the industrial tendency of printable electronics and flat panel display including some examples of inkjet printing and present the considerable points of inkjet printing method and some role of materials for successful inkjet printing.

  • PDF

Performance Analysis of a Panel Type Latent Heat Storage Equipment for Solar Thermal Storage (태양열저장(太陽熱貯藏)을 위한 평판형잠열축열장치(平板形潛熱蓄熱裝置)의 성능분석(性能分析))

  • Kim, Y.B.;Ju, E.S.;Yun, Y.D.;La, W.J.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.290-297
    • /
    • 1991
  • For the efficient utilization of the solar thermal energy to overcome the time gap between to supply and demand, an efficient heat storage technique, especially high density-latent-heat storage system, is necessary. In this study, the performance of a panel type latent heat storage equipment during heat discharging process was analyzed theoretically and experimentally. In order to find out the performance of the system, computer simulation programs were developed by finite difference method. The governing equations were constructed by two dimensional heat conduction model with moving boundary. The results of the experimental and the theoretical analysis were reasonably well agreed. The efficiencies of the double pipe type and the panel type latent heat storage equipment were compared.

  • PDF

A Study on the Korean Fit Test Panel and Static Headform Chamber (한국형 테스트 패널과 Static Headform Chamber 개발연구)

  • Hyekyung Seo;Hoyeong Jang;Harim An
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.145-155
    • /
    • 2023
  • Objectives: A fit test panel is needed to identify the fit performance of a respirator and its face seal. This is a criterion for selecting subjects that can represent the facial characteristics of users. Although anthropometry data has been developed for people in United States and China it is not yet present in Korea. This study aimed to develop a Korean fit test panel and test headform. Methods: For the 7th and 8th waves of the Size Korea anthropometry data, facial measurements of 11,429 people aged 15 to 69 years were used for analysis. PCA and bivariate panel were classified using the ISO16976-2:2022(E) anthropometrics analysis method. Based on this result, a static headform was developemed and a fit test chamber was constructed. Results: Of the 11,429 Korean people used for principal component analysis, 11,300 were included in the ellipse, marking an acceptance rate of 98.87% on PCA panel. The face types were classified into five types. Among them, a large, medium, and small static headform were printed using a 3D printer. In addition, 10,985 people (96.12%) were included in the bivariate panel based on face length and face width. The y-axis (face length) boundary was 97.87 to 134.59 mm, and the x-axis (face width) boundary was 120.75 to 158.23 mm. Conclusions: Compared to the ISO analysis, the Korean principal component was narrower in the width item (PC1) and longer in the length item (PC2). For the future, it is necessary to conduct a fit test using the developed headform and chamber device to confirm the usefulness of this Korean test panel. Therefore, this study is considered valuable as basic research for Korean test panels.

A Three-dimensional Transparent Display with Enhanced Transmittance and Resolution Using an Active Parallax Barrier with See-through Areas on an LCD Panel

  • Park, Minyoung;Choi, Hee-Jin
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.95-100
    • /
    • 2017
  • The transmittance of the three dimensional (3D) transparent display is an important factor and can be enhanced by adding a see-through area to the displayed 3D image in order to transmit an ambient light with maximum transparency. However, there is a side effect that the perceived 3D resolution can be degraded due to the see-through area. In this paper, we propose an advanced method to resolve the above trade-off relation between the transparency and the 3D resolution by using an active parallax barrier (PB) with a see-through area. The experimental results are also presented to prove the proposed principle.

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.347-360
    • /
    • 2017
  • The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.

A Multi-View Images Interleaving for Slanted Parallax Barrier based Display Device (사선형 시차 장벽 기반 입체 디스플레이 장치를 위한 다중 시점 영상 생성)

  • Jung, Kyung-Boo;Park, Jong-Il;Choi, Byung-Uk
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.491-502
    • /
    • 2012
  • Flat panel-based parallax barrier or lenticular based 3D display devices that have been developed recently are designed to feel depth. In order to see a three-dimensional(3D) image by the display device, a multi-view image displayed on the flat panel must be regenerated from images of multi-views using a subsampling method. Previous subsampling methods are focused on reducing crosstalk. In this paper, we focus on a misalignment that is occurred on manufacture process of slanted parallax barrier based autostereoscopic display device. Therefore, we propose a interleaving method that considers tilt of slanted parallax barrier, aperture size, and distance between an autostereoscopic display device and a viewer to see a 3D image regardless of a viewer position.

Study on Steady Flow Effects in Numerical Computation of Added Resistance of Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.193-203
    • /
    • 2017
  • This study investigated the steady-flow effects present in the numerical computation of the resistance added to a ship in waves. For a ship advancing in the forward direction, a time-domain 3D Rankine panel method is applied to solve the ship motion problem, and the added resistance due to waves is calculated using a near-field method, with the direct integration of the second-order pressure on the hull surface. In the linear potential theory, the steady flow is approximated by the basis potential of a uniform flow or double-body flow in order to linearize the boundary conditions. By applying these two different linearization schemes, the coupling effects between steady and unsteady solutions were examined. Furthermore, in order to analyze the steady-flow effects on the hull geometry, the computation results for two realistic hull forms, a KVLCC2 tanker and DTC containership, were compared. In particular, the mj term, which represents the coupling effects under the body boundary condition, was evaluated considering the geometry of a non-wall-sided ship. Lastly, the characteristics of the linearization schemes were examined in relation to the disturbed waves around a ship and the components of added resistance.

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

Effects of Various Packaging Systems on the Quality Characteristic of Goat Meat

  • Morales-delaNuez, A.;Moreno-Indias, I.;Falcon, A.;Arguello, A.;Sanchez-Macias, D.;Capote, J.;Castro, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.428-432
    • /
    • 2009
  • 40 goat kid ribcages were held for 7 days in storage conditions ($4^{\circ}C$) and used to determine the effects of three different packaging methods (atmospheric air, vacuum and modified atmosphere package (MAP) 10:70:20 mixture of $N_2:O_2:CO_2$) on meat quality of the chops. L* was affected by the packaging method being lighter than MAP chops. The coordinate a* significantly increased during storage time. For MAP-packed chops and those kept in atmospheric air, b* increased markedly during storage time whereas it remained unaffected throughout storage when in vacuum packages. Final pH values ranged from 5.6 to 5.8 and no effects were found for either storage time or packaging method. WHC means were lowest for the three packaging methods on day 7 of storage and highest on day 1. Storage time increased water loss in vacuum treatments. Trained panel colour acceptability was lower at 3, 5 and 7 days than on day 1 of storage for atmospheric air treatment and vacuum packaging, while for the MAP treatment average values on days 5 and 7 were lower than those observed on days 1 or 3. Trained panel odour was lower for atmospheric air and vacuum packages at 3, 5, and 7 days storage than at 1 day, while no differences were found in trained panel odour acceptability for MAP packages. With reference to consumers, the MAP proposed in the present study is the chosen method for storing goat meat, rather than vacuum or atmospheric air packaging.

Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

  • Liu, Shukui;Papanikolaou, Apostolos D.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT) of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.