• Title/Summary/Keyword: 3-D Object

Search Result 2,119, Processing Time 0.026 seconds

Construction of LiDAR Dataset for Autonomous Driving Considering Domestic Environments and Design of Effective 3D Object Detection Model (국내 주행환경을 고려한 자율주행 라이다 데이터 셋 구축 및 효과적인 3D 객체 검출 모델 설계)

  • Jin-Hee Lee;Jae-Keun Lee;Joohyun Lee;Je-Seok Kim;Soon Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.203-208
    • /
    • 2023
  • Recently, with the growing interest in the field of autonomous driving, many researchers have been focusing on developing autonomous driving software platforms. In particular, we have concentrated on developing 3D object detection models that can improve real-time performance. In this paper, we introduce a self-constructed 3D LiDAR dataset specific to domestic environments and propose a VariFocal-based CenterPoint for the 3D object detection model, with improved performance over the previous models. Furthermore, we present experimental results comparing the performance of the 3D object detection modules using our self-built and public dataset. As the results show, our model, which was trained on a large amount of self-constructed dataset, successfully solves the issue of failing to detect large vehicles and small objects such as motorcycles and pedestrians, which the previous models had difficulty detecting. Consequently, the proposed model shows a performance improvement of about 1.0 mAP over the previous model.

Vanishing point-based 3D object detection method for improving traffic object recognition accuracy

  • Jeong-In, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.93-101
    • /
    • 2023
  • In this paper, we propose a method of creating a 3D bounding box for an object using a vanishing point to increase the accuracy of object recognition in an image when recognizing an traffic object using a video camera. Recently, when vehicles captured by a traffic video camera is to be detected using artificial intelligence, this 3D bounding box generation algorithm is applied. The vertical vanishing point (VP1) and horizontal vanishing point (VP2) are derived by analyzing the camera installation angle and the direction of the image captured by the camera, and based on this, the moving object in the video subject to analysis is specified. If this algorithm is applied, it is easy to detect object information such as the location, type, and size of the detected object, and when applied to a moving type such as a car, it is tracked to determine the location, coordinates, movement speed, and direction of each object by tracking it. Able to know. As a result of application to actual roads, tracking improved by 10%, in particular, the recognition rate and tracking of shaded areas (extremely small vehicle parts hidden by large cars) improved by 100%, and traffic data analysis accuracy was improved.

3D Object Restoration and Data Compression Based on Adaptive Simplex-Mesh Technique (적응 Simplex-Mesh 기술에 기반한 3차원 물체 복원과 자료 압축)

  • 조용군
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.436-443
    • /
    • 1999
  • Most of the 3D object reconstruction techniques divide the object into multiplane and approximate the surfaces of the object. The Marching Cubes Algorithm which initializes the mesh structure using a given isovalue. and Delaunay Tetrahedrisation are widely used. Deformable models are well-suited for general object reconstruction because they make little assumptions about the shape to recover and they can reconstruct objects *om various types of datasets. Now, many researchers are studying the reconstruction systems based on a deformable model. In this paper, we propose a novel method for reconstruction of 3D objects. This method, for a 3D object composed of curved planes, compresses the 3D object based on the adaptive simplexmesh technique. It changes the pre-defined mesh structure, so that it may approach to the original object. Also, we redefine the geometric characteristics such as curvatures. As results of simulations, we show reconstruction of the original object with high compression and concentration of vertices towards parts of high curvature in order to optimize the shape description.

  • PDF

Down-Scaled 3D Object for Telediagnostic Imaging Support System

  • Shin, Hang-Sik;Yoon, Sung-Won;Kim, Jae-Young;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.185-191
    • /
    • 2005
  • In this paper, we proposed a downscaled 3D object technique using medical images for telediagnostic use. The proposed system consisted of downscaling/thresholding processes for building a downscaled 3D object and a process for obtaining 2D images at specific angles for diagnosis support. We used 80 slices of Digital Imaging and Communication in Medicine(DICOM) CT images as sample images and the platform-independent Java language for the experiment. We confirmed that the total image set size and transmission time of the original DICOM image set using a down-scaled 3D object decreased approximately $99\%\;and\;98.41\%,$ respectively. With additional studies, the proposed technique obtained from these results will become useful in supporting diagnosis for home and hospital care.

Combining Shape and SIFT Features for 3-D Object Detection and Pose Estimation (효과적인 3차원 객체 인식 및 자세 추정을 위한 외형 및 SIFT 특징 정보 결합 기법)

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.429-435
    • /
    • 2010
  • Three dimensional (3-D) object detection and pose estimation from a single view query image has been an important issue in various fields such as medical applications, robot vision, and manufacturing automation. However, most of the existing methods are not appropriate in a real time environment since object detection and pose estimation requires extensive information and computation. In this paper, we present a fast 3-D object detection and pose estimation scheme based on surrounding camera view-changed images of objects. Our scheme has two parts. First, we detect images similar to the query image from the database based on the shape feature, and calculate candidate poses. Second, we perform accurate pose estimation for the candidate poses using the scale invariant feature transform (SIFT) method. We earned out extensive experiments on our prototype system and achieved excellent performance, and we report some of the results.

Data Acquisition and Processing of 3D Object (3차원 물체의 데이터 획득 및 가공)

  • Yi, Kyoung-Woong;Choi, Han-Su;Kim, Nam-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.83-87
    • /
    • 2002
  • Accurate acquisition of surface geometries such as machined surfaces, biological surfaces, and deformed parts and processing 3D object have been very important technique in scientific study and engineering, expecially for system design, manufacturing and inspection. Defective human teeth are usually ground to be coped with special alloy coping which is hand-made by dental technician. This make dental technician to be difficult and take a long time Dental CAD/CAM Systems consist of two parts, data acquisition and milling. In this paper, a method is studied to mill object which is acquired 3D geometric data of the small object such as a die in stone model. This paper present a control program and a mechanical system for milling 3D object.

  • PDF

System for the Hierarchical Face Plastic Surgery Using the Facial 3D Models (얼굴 3D모델을 이용한 계층적 얼굴성형 시스템)

  • 신승철;조은규;유건수;박상운;최창석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1657-1660
    • /
    • 2003
  • 7 This paper offer to the system for the hierarchical face plastic surgery using of 3D models. For the system, Make hierarchical plastic object of facial 3D models, and special appointment setting of plastic object. In order to give variaty to a scale, type, angle, position of plastic object that developed plastic surgery solution. It is possible to plastic surgery that harmonize with plastic objects, solution, vector by selected user.

  • PDF

3D Object Recognition Using SOFM (3D Object Recognition Using SOFM)

  • Cho, Hyun-Chul;Shon, Ho-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.99-103
    • /
    • 2006
  • 3D object recognition independent of translation and rotation using an ultrasonic sensor array, invariant moment vectors and SOFM(Self Organizing Feature Map) neural networks is presented. Using invariant moment vectors of the acquired 16×8 pixel data of square, rectangular, cylindric and regular triangular blocks, 3D objects could be classified by SOFM neural networks. Invariant moment vectors are constant independent of translation and rotation. The recognition rates for the training and testing data were 95.91% and 92.13%, respectively.

  • PDF

Three-Dimensional Phase-Only Holographic Correlation

  • Kim, Tae-Geun
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.99-109
    • /
    • 2001
  • This paper presents a phase-only modulation scheme for a three-dimensional (3-D) image matching system to improve optical efficiency of the system. The 3-D image matching system is based on the two mask heterodyne scanning. A hologram of the 3-D reference object is first created and then the phase of the hologram is extracted. The phase of the hologram is represented as one mask with the other mask being a plane wave. The superposition of each beam modulated by the two masks generated a scanning beam pattern. This beam pattern scans the 3-D target object to be recognized. The output of the scanning system gives out the correlation of the phase-only hologram of the reference object and the complex hologram of the target object. Since a hologram contains 3-D information of an object as a form of fringe pattern, the correlation of holograms matches whole 3-D aspect of the objects. Computer simulations are performed with additive gaussian noise and without noise for the complex hologram modulation scheme and the phase-only hologram modulation scheme. The computer simulation results show that the phase-only hologram modulation scheme improves the optical efficiency. Thus the system with the phase-only hologram modulation scheme is more robust than the system with the complex hologram modulation scheme.

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.