• Title/Summary/Keyword: 3-D Integration

Search Result 821, Processing Time 0.032 seconds

Analysis of Geospatial Information Construction Efficiency by 3D Laser Scanner Integrated with Total Station (3D 레이저 스캐너와 토털스테이션 통합에 의한 공간정보 구축의 효율성 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.638-643
    • /
    • 2017
  • The 3D laser scanner operates by measuring the distance from the sensor to the target and operates on the same principle as Electronic Distance Measuring (EDM). Recently, 3D laser scanning technology has been rapidly developed in line with the strongly increasing demand for 3D information acquisition. Therefore, it is now possible to more easily acquire geometric information of various objects existing in real space. In this study, we constructed geospatial information by using new equipment which integrated 3D laser scanner and total station, and we suggest the possibility of using new technology for geospatial information construction by comparing and analyzing with existing methods. In the study result, we demonstrated the efficiency of the geospatial information constructed by integration of 3D laser scanner and total station. The proposed method is expected to shorten the time required for data acquisition compared to the existing method using the existing total station. Furthermore, it is possible to use various methods such as cross section analysis and volume calculation using the acquired data. In the future, spatial information construction by integration of 3D laser scanner and total station will help improve work efficiency in related fields.

A 3D co-rotational beam element for steel and RC framed structures

  • Long, Xu;Tan, Kang Hai;Lee, Chi King
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.587-613
    • /
    • 2013
  • A 3-node 3D co-rotational beam element using vectorial rotational variables is employed to consider the geometric nonlinearity in 3D space. To account for shape versatility and reinforced concrete cross-sections, fibre model has been derived and conducted. Numerical integration over the cross-section is performed, considering both normal and shear stresses. In addition, the derivations associated with material nonlinearity are given in terms of elasto-plastic incremental stress-strain relationship for both steel and concrete. Steel reinforcement is treated as elasto-plastic material with Von Mises yield criterion. Compressive concrete behaviour is described by Modified Kent and Park model, while tensile stiffening effect is taken into account as well. Through several numerical examples, it is shown that the proposed 3D co-rotational beam element with fibre model can be used to simulate steel and reinforced concrete framed structures with satisfactory accuracy and efficiency.

Dielectric Properties of ink-Jet printed $Al_2O_3$-resin Hybrid Films

  • Hwang, Myung-Sung;Jang, Hun-Woo;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.81-81
    • /
    • 2009
  • Non-sintered Alumina films were fabricated via inkjet printing processes without a high temperature sintering process. The packing density of these inkjet-printed alumina films measured around 60%. Polymer resin was infiltrated thru these non-sintered films in order to fill out the 40% of voids constituting the rest of the inkjet-printed films. The concept of inkjet-printed Alumina-Resin hybrid materials was designed in order to be applicable to the ceramic package substrates for 3D-system module integration which may possibly substitute LTCC-based 3D module integration. So, the dielectric properties of these inkjet-printed $Al_2O_3$ hybridmaterialsareofourgreatinterest. We have measured dielectric constant and dissipation factor of the inkjet-printed $Al_2O_3$-resinhybridfilmsbyvaryingtheamountofresininfiltratedthruthe$Al_2O_3$films.

  • PDF

Evaluating the accuracy of mass scaling method in non-linear quasi-static finite element analysis of RC structures

  • A. Yeganeh-Salman;M. Lezgy-Nazargah
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.485-500
    • /
    • 2023
  • The non-linear static analysis of reinforced concrete (RC) structures using the three-dimensional (3D) finite element method is a time-consuming and challenging task. Moreover, this type of analysis encounters numerical problems such as the lack of convergence of results in the stages of growth and propagation of cracks in the structure. The time integration analysis along with the mass scaling (MS) technique is usually used to overcome these limitations. Despite the use of this method in the 3D finite element analysis of RC structures, a comprehensive study has not been conducted so far to assess the effects of the MS method on the accuracy of results. This study aims to evaluate the accuracy of the MS method in the non-linear quasi-static finite element analysis of RC structures. To this aim, different types of RC structures were simulated using the finite element approach based on the implicit time integration method and the mass scaling technique. The influences of effective parameters of the MS method (i.e., the allowable values of increase in the mass of the RC structure, the relationship between the duration of the applied load and fundamental vibration period of the RC structure, and the pattern of applied loads) on the accuracy of the simulated results were investigated. The accuracy of numerical simulation results has been evaluated through comparison with existing experimental data. The results of this study show that the achievement of accurate structural responses in the implicit time integration analyses using the MS method involves the appropriate selection of the effective parameters of the MS method.

Mouthguard and Sports Dentistry: a perspective for the future (마우스가드와 스포츠치의학의 발전과 미래)

  • Ryu, Jae Jun;Lee, Soo Young
    • The Journal of the Korean dental association
    • /
    • v.56 no.6
    • /
    • pp.339-347
    • /
    • 2018
  • Conventional mouthguard fabrication process which consists of elastomeric impression taking and followed gypsum model making is changing into intraoral scanning and dental model printing with 3D printer. In addition, new 3D printing materials for mouthgurad, 3D Computer-Aided Design(CAD) software for dental appliance, evaluation of a virtual dentoalveolar model for testing virtually 3D designed mouthguard, and lightweight sensor technology will lead dental professionals to the new era of Sports Dentistry, including information technology integrated custom mouthguard fabrication and creating value with analytic data acquired from sensors in mouthguard.

  • PDF

Development of Digital Surface Model and Feature Extraction by Integrating Laser Scanner and CCD sensor

  • Nagai, Masahiko;Shibasaki, Ryosuke;Zhao, Huijing;Manandhar, Dinesh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.859-861
    • /
    • 2003
  • In order to present a space in details, it is indispensable to acquire 3D shape and texture simultaneously from the same platform. 3D shape is acquired by Laser Scanner as point cloud data, and texture is acquired by CCD sensor. Positioning data is acquired by IMU (Inertial Measurement Unit). All the sensors and equipments are assembled on a hand-trolley. In this research, a method of integrating the 3D shape and texture for automated construction of Digital Surface Model is developed. This Digital Surface Model is applied for efficient feature extraction. More detailed extraction is possible , because 3D Digital Surface Model has both 3D shape and texture information.

  • PDF

Analysis of Semi-Rigid Connections on 3D Floating Structures (3차원 플로팅 구조물의 반강접 접합부 해석)

  • Park, Jong-Seo;Song, Hwa-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2012
  • The shape of floating superstructure is the same as other buildings, but the foundation is based not on land but on a floating body. Unlike inland structures, they are largely influenced by the wave load. Deformation of the floating pontoon due to the wave loads affects the connection, which in turn causes problems related to the habitability and safety to the superstructure users. Accordingly, this study conducted elastic analysis regarding rigid connection and semi-rigid connection by the integration analysis that combined together the superstructure and pontoon of the 3-D floating structure. Moreover, this study investigated the results of the separation analysis excluding pontoon and the integration analysis. In addition, elasticity analysis was used to divide up the wave loads cases, and to classify the moment and displacement of the structure depending on connection following the changes in the wave loads.

Development of Virtual Reality Multi Screen Simulation System based on BIM (BIM 기반의 가상현실 다면투사 시뮬레이션 시스템 구축)

  • Seo, Myoung-Bae;Park, Hyung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.231-238
    • /
    • 2017
  • Using 3D based BIM(Building Information Modeling) enables a variety of construction simulations. The is no case to simulate BIM demonstration experiment on deeply immersed virtual reality environment in korea. This paper develops a multi screen based simulation system to enable 3D based immersed environment to diverse decision making and virtual construction simulation. In a developed simulation laboratory, we can carry out BIM drawing review, disaster evacuation simulation, constructability review on wild land and design urban planning using haptic device on 3-side space with 4K resolution . Also, It can review large amount of drawings without data conversion because of compatibility with BIM software.

New Anisoparametric 3-Node Elements for Out-of-Plane Deformable Curved Beam

  • Kim, Moon-Joon;Min, Oak-Key;Kim, Yong-Woo;Moon, Won-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.272-282
    • /
    • 2000
  • Based on numerical reduced minimization theory, new anisoparametric 3-node elements for out-of-plane curved beam are developed. The elements are designed to be free from spurious constraints. In this paper, the effect of the Jacobian upon numerical solution is analyzed and predicted through reduced minimization analysis of anisoparametric 3-node elements with different Jacobian assumption. The prediction is verified by numerical tests for circular and spiral out-of-plane deformable curved beam models. This paper proposes two kinds of 3-node elements with 7-DOF; one element employs 2-point integration for all strains, and the other element uses 3-point integration with a constant Jacobian within element for calculation of shear strain.

  • PDF

Orbital stability study and transit-timing variations of the extrasolar planetary system: K2-3

  • Choi, Beom-Kyu;Hinse, Tobias C.;Yoon, Tae Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.79.1-79.1
    • /
    • 2016
  • We investigated the dynamical properties of the K2-3 multi-planet system. Recently three transiting planets are discovered using the extended Kepler2 (K2) mission (Crossfield et al. 2015). We extended their preliminary stability study by considering a substantial longer integration time. Since planet mass is not known from photometry we calculated exoplanets masses using empirical mass-radius relations (Weiss & Marcy 2014). Forward numerical integration was done using the MERCURY integration package (Chambers 1999). Our results demonstrate that this system is stable over a time scale of $10^8years$. Furthermore, we investigated the dynamical effects of a hypothetical planet in the semi-major axis vs eccentricity space. For stable orbits of the hypothetical planet we calculated transit-timing variation (TTV) and radial velocity signals. We find that for a hypothetical perturber with mass 1-13 Mjup, semi-major axis 0.2 - 0.8 AU and eccentricity 0.00-0.47 the following timing signals for the planet K2-3 b is ~ 5 sec, K2-3 c is ~ 130 sec and for K2-3 d is ~ 190 sec. The radial velocity signal of the hypothetical planet is ~ 4 m/s. Using typical transit-timing errors from the K2 mission, we find that the above hypothetical planet would not be detectable. Its radial velocity signal, however, would be detectable using the APF 2.4m telescope or HARPS at the ESO/La Silla Observatory in Chile.

  • PDF