• 제목/요약/키워드: 3-D 신경망

검색결과 220건 처리시간 0.03초

적응형 깊이 추정기를 이용한 미지 물체의 자세 예측 (Predicting Unseen Object Pose with an Adaptive Depth Estimator)

  • 송성호;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권12호
    • /
    • pp.509-516
    • /
    • 2022
  • 3차원 공간에서 물체들의 정확한 자세 예측은 실내외 환경에서 장면 이해, 로봇의 물체 조작, 자율 주행, 증강 현실 등과 같은 많은 응용 분야들에서 폭넓게 활용되는 중요한 시각 인식 기술이다. 물체들의 자세 예측을 위한 과거 연구들은 대부분 각 인식 대상 물체마다 정확한 3차원 CAD 모델을 요구한다는 한계점이 있었다. 이러한 과거 연구들과는 달리, 본 논문에서는 3차원 CAD 모델이 없어도 RGB 컬러 영상들만 이용해서 미지 물체들의 자세를 예측해낼 수 있는 새로운 신경망 모델을 제안한다. 제안 모델은 적응형 깊이 추정기인 AdaBins를 이용하여 스스로 미지 물체 자세 예측에 필요한 각 물체의 깊이 지도를 효과적으로 추정해낼 수 있다. 벤치마크 데이터 집합들을 이용한 다양한 실험들을 통해, 본 논문에서 제안한 모델의 유용성과 성능을 평가한다.

스테레오정합과 신경망을 이용한 3차원 잡기계획 (3D Grasp Planning using Stereo Matching and Neural Network)

  • 이현기;배준영;이상룡
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1110-1119
    • /
    • 2003
  • This paper deals with the synthesis of the 3-dimensional grasp planning for unknown objects. Previous studies have many problems, which the estimation time for finding the grasping points is much long and the analysis used the not-perfect 3-dimensional modeling. To overcome these limitations in this paper new algorithm is proposed, which algorithm is achieved by two steps. First step is to find the whole 3-dimensional geometrical modeling for unknown objects by using stereo matching. Second step is to find the optimal grasping points for unknown objects by using the neural network trained by the result of optimization using genetic algorithm. The algorithm is verified by computer simulation, comparing the result between neural network and optimization.

연산회로 신경망 (Computational Neural Networks)

  • 강민제
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.80-86
    • /
    • 2002
  • 아날로그 합산과 선형방정식을 풀 수 있는 신경망구조가 제안되었다. 계산에너지함수에 근거하여 가중치를 구하는 Hopfield 신경망모델을 사용하였다. 아날로그 합산과 선형방정식은 각각 Hopfiled의 A/D컨버터와 선형프로그래밍회로망을 이용하여 설계되었다. 시뮬레이션은 Pspice 프로그램을 이용하였으며, 그 결과들은 대부분 전체극소점으로 수렴함을 보였다.

  • PDF

역전파 신경망을 이용한 등고선 데이타로부터 3차원 지형 복원 (II) (Recinstrucion of 3D Shapes from Contour Line Data using The Backpropagation Neutal Networks (II))

  • 김수선;김동윤;김하진
    • 한국정보처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.586-595
    • /
    • 1997
  • 본 논문에서는 프렉탈과 신경망을 이용하여 등고선 데이타로부터 3차원 지형을 복원하는 더욱 개선된 알고리즘을 제안한다. 본 알고리즘은 이미 제안한 것[1, 2, 3]을 바탕으로 인접 패치들과의 관계를 고려하여 개선한 것으로, 지형의 특징을 좀더 사실 적으로 반영할 수 있는 더 많은 조건을 부여한 데이타를 기존의 특징 데이타에 부가하여 학습한다. 학습 결과 평균오차가 줄어든 학습 패턴을 이용하여 산악지형과 평탄지형 에 대하여 실험하고 결과 산악지형에 대한 적용이 더 효과적임을 보였다.

  • PDF

3 차원 게임에서의 물리엔진에 기반한 인공지능 캐릭터에 관한 연구 (Research on Artificial Intelligence Character based Physics Engine in 3D Game)

  • 최종화;이병윤;이주연;신동규;신동일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.469-472
    • /
    • 2005
  • 이 논문은 게임물리엔진에서 게임세계의 물리적인 요소를 통하여 게임에 존재하는 캐릭터들에게 인공지능을 부여하기 위한 연구에 관해서 다룬다. 게임속에서의 물리적인 상황을 자동인식하기 위해서 신경망을 이용하였다. 게임속에서의 인공지능의 적용은 게임의 속도저하를 가져오게 되는데 이 논문에서는 그러한 단점을 보완하기 위하여 물리엔진에서 캐릭터의 움직임을 계산하는 수치적분 메서드들에 대한 각 물리상황에 따른 최적의 성능을 분석하여 각각의 물리 상황마다 다른 수치 적분 메서드를 적용하는 내부 구조를 취하였다. 수치적분 메서드에 대한 각각의 성능 분석은 세가지의 물리적 상황을 구분하여 그에 기반하여 실험되었다. 인공지능 캐릭터에 대한 실험은 신경망의 토폴로지에 대한 변화와 학습 횟수에 대한 변화 및 은닉층에 대한 변화로 신경망에서의 최적의 성능에 대한 평가를 실시하였다.

  • PDF

국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용 (Application of Flat DMT and ANN for Reliable Estimation of Undrained Shear Strength of Korean Soft Clay)

  • 변위용;김영상;이승래;정은택
    • 한국지반공학회논문집
    • /
    • 제20권5호
    • /
    • pp.17-25
    • /
    • 2004
  • DMT 시험은 연약지반의 공학적 특성을 파악하기 위한 현장 시험방법으로, 이 방법으로부터 구한 비배수 전단강도는 가장 신뢰성 있고 유용한 매개변수로 알려져 있다. 그러나 국외 다른 지역의 자료를 토대로 기존에 제안된 상관관계식들은 지역적인 특성에 의존한다. DMT 시험 결과는 3가지 중간 지수 - 재료지수, 수평응력지수, dilatometer modulus를 사용하여 해석이 이루어지며 특히 비배수 전단강도는 수평응력지수만을 이용하여 예측하고 있다. 본 논문에서는 먼저 DMT 시험의 국내 연약지반에서의 적용성을 살펴보았으며 DMT로부터 비배수 전단강도를 추정하기 위하여 $p_0, p_1, p_2, {\sigma '}_v$ 그리고 초기 간극수압을 바탕으로 인공신경망 모델을 개발하였다. 인공신경망 모델은 오차 역전파 알고리즘을 적용하였으며 국내 연약지반에서 수행된 DMT 시험 자료를 이용하여 훈련하였다. 인공신경망 모델의 적용성을 판단하기 위하여 훈련에 이용되지 않은 자료로부터 예측된 결과와 기존에 제안된 상관관계식으로부터 얻은 결과를 서로 비교하였다.

3차원 특징볼륨을 이용한 깊이영상 생성 모델 (Depth Map Estimation Model Using 3D Feature Volume)

  • 신수연;김동명;서재원
    • 한국콘텐츠학회논문지
    • /
    • 제18권11호
    • /
    • pp.447-454
    • /
    • 2018
  • 본 논문은 컨볼루션 신경망으로 이루어진 학습 모델을 통해 스테레오 영상의 깊이영상 생성 알고리즘을 제안한다. 제안하는 알고리즘은 좌, 우 시차 영상을 입력으로 받아 각 시차영상의 주요 특징을 추출하는 특징 추출부와 추출된 특징을 이용하여 시차 정보를 학습하는 깊이 학습부로 구성된다. 우선 특징 추출부는 2D CNN 계층들로 이루어진 익셉션 모듈(xception module) 및 ASPP 모듈(atrous spatial pyramid pooling) module을 통해 각각의 시차영상에 대한 특징맵을 추출한다. 그 후 각 시차에 대한 특징 맵을 시차에 따라 3차원 형태로 쌓아 3D CNN을 통해 깊이 추정 가중치를 학습하는 깊이 학습부를 거친 후 깊이 영상을 추정한다. 제안하는 알고리즘은 객체 영역에 대해 기존의 다른 학습 알고리즘들 보다 정확한 깊이를 추정하였다.

신경망을 이용한 3차원 잡는 점들의 해석적 결정 (Analytic Determination of 3D Grasping points Using Neural Network)

  • 이현기;한창우;이상룡
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.112-117
    • /
    • 2003
  • This paper deals with the problem of synthesis of the 3-dimensional Grasp Planning. In previous studies the genetic algorithm has been used to find optimal grasping points, but it had a limitation such as the determination time of grasping points was so long. To overcome this limitation we proposed a new algorithm which employs the Neural Network. In the Neural network we chose input parameters based on the shape of the object and output parameters resulted from optimization with the GA method. In this study the GRNN method is employed, it has been trained by the result value of optimization method and it has been tested by known object. The algorithm is verified by computer simulation.

딥러닝 기반 자동 변조 인식 성능 분석 (Performance analysis in automatic modulation classification based on deep learning)

  • 강종진;김재현
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.427-432
    • /
    • 2021
  • 본 논문에서는 미상의 통신신호에 대한 자동 변조 인식을 위하여 심층신경망인 딥뉴럴네트워크를 적용하여 변조 형태를 식별하고 그 성능을 분석하였다. 신경망 입력 데이터는 변조된 신호의 시간영역 디지털샘플 데이터, FFT(Fast Fourier Transform)를 적용한 주파수영역 데이터, 시간 및 주파수영역 혼합데이터를 사용하여 각각의 변조인식 성능을 확인하였다. 아날로그 변조 및 디지털 변조 신호 11종에 대하여 -20~18 dB 까지 다양한 SNR(Signal to Noise Ratio) 환경에서 변조인식 성능을 확인하고 그 성능을 분석하였으며, 입력 데이터의 종류에 따른 학습 속도를 확인함으로써 제안한 방법이 실제적인 자동변조 인식 시스템 구축에 효과적인 방법임을 확인 하였다.

HD 해상도에서 실시간 구동이 가능한 딥러닝 기반 블러 제거 알고리즘 (A Deep Learning-based Real-time Deblurring Algorithm on HD Resolution)

  • 심규진;고강욱;윤성준;하남구;이민석;장현성;권구용;김은준;김창익
    • 방송공학회논문지
    • /
    • 제27권1호
    • /
    • pp.3-12
    • /
    • 2022
  • 영상 블러 제거(deblurring)는 피사체의 움직임, 카메라의 흔들림, 초점의 흐림 등으로 인해 촬영 도중 발생한 영상 블러(blur)를 제거하는 것을 목표로 한다. 최근 스마트폰이 보급되며 휴대용 디지털카메라를 들고 다니는 것이 일상인 시대가 오면서 영상 블러 제거 기술은 그 필요성을 점점 더해가고 있다. 기존의 영상 블러 제거 기술들은 전통적인 최적화 기법을 활용하여 연구되어 오다가 최근에는 딥러닝이 주목받으며 합성곱 신경망 기반의 블러 제거 방법들이 활발하게 제안되고 있다. 하지만 많은 방법들이 성능에 먼저 초점을 맞추어 개발되어 알고리즘의 속도로 인하여 현실에서 실시간 활용이 어렵다는 문제점을 안고 있다. 이를 해결하고자 본 논문에서는여러 신경망 설계 기법을 활용하여 HD 영상에서도 30 FPS 이상의 실시간 구동이 가능한 딥러닝 기반 블러 제거 알고리즘을 설계하여 이를 제안한다. 또한 학습 및 추론 과정을 개선하여 속도에 별다른 영향 없이 신경망의 성능을 높이고 동시에 성능에 별다른 영향없이 신경망의 속도를 높였다. 이를 통해 최종적으로 1280×720 해상도에서 초당 33.74장의 프레임을 처리하며 실시간 동작이 가능함을 보여주었고 GoPro 데이터 세트를 기준으로 PSNR 29.79, SSIM 0.9287의 속도 대비 우수한 성능을 보여주었다.