DOI QR코드

DOI QR Code

Performance analysis in automatic modulation classification based on deep learning

딥러닝 기반 자동 변조 인식 성능 분석

  • Received : 2021.01.13
  • Accepted : 2021.01.28
  • Published : 2021.03.31

Abstract

In this paper, we conduct performance analysis in automatic modulation classification of unknown communication signal to identify its modulation types based on deep neural network. The modulation classification performance was verified using time domain digital sample data of the modulated signal, frequency domain data to which FFT was applied, and time and frequency domain mixed data as neural network input data. For 11 types of analog and digitally modulated signals, the modulation classification performance was verified in various SNR environments ranging from -20 to 18 dB and reason for false classification was analyzed. In addition, by checking the learning speed according to the type of input data for neural network, proposed method is effective for constructing an practical automatic modulation recognition system that require a lot of time to learn.

본 논문에서는 미상의 통신신호에 대한 자동 변조 인식을 위하여 심층신경망인 딥뉴럴네트워크를 적용하여 변조 형태를 식별하고 그 성능을 분석하였다. 신경망 입력 데이터는 변조된 신호의 시간영역 디지털샘플 데이터, FFT(Fast Fourier Transform)를 적용한 주파수영역 데이터, 시간 및 주파수영역 혼합데이터를 사용하여 각각의 변조인식 성능을 확인하였다. 아날로그 변조 및 디지털 변조 신호 11종에 대하여 -20~18 dB 까지 다양한 SNR(Signal to Noise Ratio) 환경에서 변조인식 성능을 확인하고 그 성능을 분석하였으며, 입력 데이터의 종류에 따른 학습 속도를 확인함으로써 제안한 방법이 실제적인 자동변조 인식 시스템 구축에 효과적인 방법임을 확인 하였다.

Keywords

References

  1. O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, "A survey of automatic modulation classification techniques: classical approaches and new trends," IET Communications, vol. 1, pp. 137-156, Apr. 2007. https://doi.org/10.1049/iet-com:20050176
  2. S. H. Seo, Y. J. Yoon, Y. H. Jin, Y. J. Seo, S. M. Lim, J. M. Ahn, C. S. Eun, W. Jang, and S. P. Nah, "Automatic Recognition of Analog and Digital Modulation Signals," The Journal of Korean Institute of Communications and Information Sciences, vol. 30, no. 1C, pp. 73-81, Jan. 2005.
  3. J. K. Kim, B. D. Kim, D. W. Yoon, and J. W. Choi, "Deep Neural Network-based Automatic Modulation Classification Technique," The Journal of Korean Institute of Information Technology, vol. 14, no. 12, pp. 107-115, Dec. 2016.
  4. H. J. Kim, H. J. Kim, J. H. Je, and K. S. Kim, "A deep learning method for the automatic modulation recognition of received radio signals," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 10, pp. 1275-1281, Oct. 2019. https://doi.org/10.6109/JKIICE.2019.23.10.1275
  5. T. J. O'Shea, J. Corgan, and T. C. Clancy, "Convolutional Radio Modulation Recognition Networks," Preprint, submitted, Jun. 2016. https://arxiv.org/abs/1602.04105.
  6. N. E. West and T. J. O'Shea, "Deep architectures for modulation recognition," in IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1-6, 2017.
  7. T. J. O'Shea, T. Roy, and T. C. Clancy, "Over-the-Air Deep Learning Based Radio Signal Classification," IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179, 2018. https://doi.org/10.1109/jstsp.2018.2797022
  8. I. S. Choi, S. J. Jang, and S. J. Yoo, "Feature-Based Automatic Modulation Classification Using Deep Learning in Cognitive Radio," The Journal of Korean Institute of Communications and Information Sciences, vol. 43, no. 6, pp. 930-944, Jun. 2018. https://doi.org/10.7840/kics.2018.43.6.930
  9. S. H. Kim, C. Y. Kim, S. H. Yoo, and D. S. Kim, "Design of Deep Learning Model for Automatic Modulation Classification in Cognitive Radio Network," The Journal of Korean Institute of Communications and Information Sciences, vol. 45, no. 8, pp. 1364-1372, Aug. 2020. https://doi.org/10.7840/kics.2020.45.8.1364
  10. M. Ettus and M. Braun, "The universal software radio peripheral (usrp) family of low-cost sdrs," Opportunistic Spectrum Sharing and White Space Access: The Practical Reality, pp. 3-23, 2015.
  11. T. J. O'Shea and N. West, "Radio machine learning dataset generation with GNU radio," in Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2016.
  12. N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.
  13. J. J. Kang, S. K. Park, and J. H. Roh, "Performance Analysis on Digital Phase Difference Measurement Techniques for Interferometer Direction Finder," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 8, pp. 1076-1082, Aug. 2018. https://doi.org/10.6109/JKIICE.2018.22.8.1076
  14. A. Thompson, Deep Learning on RF Data [Internet]. Available: https://on-demand.gputechconf.com/gtc/2018/presentation/s8826-deep-learning-applications-for-radio-frequency-rf-data.pdf.