• 제목/요약/키워드: 3-D 신경망

검색결과 220건 처리시간 0.028초

다층 신경망을 사용한 항공기 인식 및 3차원 방향 추정 (Aircraft Identification and Orientation Estimention Using Multi-Layer Neural Network)

  • 김대영;진성일;손현
    • 한국통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.35-45
    • /
    • 1991
  • 본 논문에서는 Backpropagation 학습 이론을 사용한 다층 구조 신경 회로망을 이용하여 3차원적으로 왜곡된 항공기 인식과 항공기의 3차원 회전 방향 추정을 컴퓨터 시뮬레이션을 통하여 수행하였다. 항공기 영상으로 부터 2차원 영상에서 왜곡 불변 (distortion invariant)특정을 가지는 피치 $(L,\;{\Phi})$를 추출하여 신경 회로망 항공기 인식기의 학습(training)에 사용하였다. 그리고 신경 회로망 인식기 설계시 그 구조를 최적화 함으로써 높은 인식률을 가지는 항공기 인식기를 구성하였다. 신경 회로망 학습 과정에서 학습 이론으로는 변형된 backpropagation 학습 이론을 도입하고 아울러 학습 수행중에 학습 변수(learning parameter)값을 변화 시키는 방법을 사용하여 전체 학습 시간을 효과적으로 단축시킬 수 있었다.

  • PDF

시뮬레이션 기반 3차원 엮임 재료의 물성치 분석 및 인공 신경망 해석 (Simulation-Based Material Property Analysis of 3D Woven Materials Using Artificial Neural Network)

  • 김병모;하승현
    • 한국전산구조공학회논문집
    • /
    • 제36권4호
    • /
    • pp.259-264
    • /
    • 2023
  • 본 논문에서는 3차원 엮임 재료의 재료 물성치들을 효율적으로 분석하고 추후 최적설계 연구에 활용하기 위해서 파라메트릭 배치 해석 워크플로우를 제시하였다. 3차원 엮임 재료를 구성하는 와이어들 사이의 간격을 설계 매개변수로 하는 파라메트릭 모델에 대해서 임의의 변수 조합을 가지는 2,500개의 수치 모델을 생성하였으며, 상용 프로그램인 매트랩과 앤시스의 여러 모듈을 사용하여 체적탄성계수, 열전도도, 유체투과율과 같은 다양한 재료 물성치들을 배치 해석을 통해서 자동으로 얻어질 수 있도록 구성하였다. 이와 같이 얻어진 대용량의 재료 물성치 데이터베이스를 활용해서 회귀 분석을 수행하였으며, 그 결과 설계 변수들과 재료 물성치 사이의 경향성과 수치 해석 결과의 정확도를 검증하였다. 또한 확보된 데이터베이스를 통해서 3차원 엮임 재료의 물성치를 예측할 수 있는 인공 신경망을 구성하고 학습시켰으며, 그 결과 임의의 설계 매개변수 값들을 가지는 엮임 재료 모델에 대해서 구조 및 유체해석 과정 없이도 높은 정확도로 재료 물성치들을 추정할 수 있음을 확인하였다.

노이즈가 완화된 거품 효과를 표현하기 위한 인공신경망 기반의 투영맵 정제 (Refinement of Projection Map Based on Artificial Neural Networks to Represent Noise-Reduced Foam Effects)

  • 김종현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권4호
    • /
    • pp.11-24
    • /
    • 2021
  • 본 논문에서는 액체 시뮬레이션에서 표현되는 거품 효과(Foam effects)를 노이즈 없이 디테일하게 표현할 수 있는 인공신경망 프레임워크를 제안한다. 거품 입자의 생성 위치와 이류는 기존의 스크린 투영법을 활용하여 계산되며, 이 과정에서 나타나는 노이즈 문제를 인공신경망을 통해 풀어낸다. 스크린 투영 접근법에서 중요한 것은 투영맵이지만 이산화된 스크린 공간에 운동량을 투영하는 과정에서 투영맵에 노이즈가 발생하며, 우리는 인공신경망 기반의 디노이징(Denoising) 네트워크를 활용하여 이 문제를 효율적으로 풀어낸다. 투영맵을 통해 거품 생성 영역이 선별되면 2D를 3D 공간으로 역변환하여 거품 입자를 생성한다. 우리는 작은 크기의 거품들이 소실되는 기존의 디노이징 네트워크 문제를 해결하였다. 뿐만 아니라, 제안하는 알고리즘을 스크린 공간 투영 프레임워크와 통합함으로써 이 접근법이 갖는 모든 장점을 그대로 수용할 수 있다. 결과적으로 깔끔한 거품 효과 뿐만 아니라, 디노이징 과정으로 인해 소실된 거품을 안정적으로 표현할 수 있는지 다양한 실험을 통해 보여준다.

다지점 인공신경망을 이용한 한강수계 기후전망 (Han River Basin climate forecast using multi-site artificial neural network)

  • 강부식;문수진;김정중
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.371-371
    • /
    • 2011
  • 본 연구에서는 한강유역 내 관측기간이 충분한 기상청 지상관측소 10개소를 선정하고 CCCma(Canadian Century for Climate modeling and analysis)에서 제공하는 자료에 대한 인공신경망기법 상세화 적용을 실시하였다. 인공신경망의 학습을 위해 CGCM3.1/T63 20C3M시나리오(reference scenario)의 22개 2D변수 중 물리적으로 민감도가 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 선정하였으며 인공신경망 학습기간은 1991년~1995년, 검증기간은 1996년~2000년, 예측기간은 2011년~2100년으로 A1B, A2 B1 시나리오 등 다양한 기후변화 시나리오를 통해 예측band를 제시하고자 하였다. 하지만 공간상관을 고려하기 위하여 각 관측소에 대하여 인공신경망 학습을 하는 경우 관측소간 spatial correlation 및 spatial cluster구현이 어렵기 때문에 Spatial Rectangular Pulse모형을 이용하고자 하였으나, 강수면적에 대한 scale의 결정이 어렵다는 단점을 확인 하고 본 연구에서는 Random Cascade 모형을 이용하여 ${\beta}$를 통한 강수면적 scale(rainy area fraction)을 결정하고자 하였다. Random Cascade모형의 기법은 격자단위의 downscaling기법으로 강수대의 공간적 형상을 재현하며 스케일에 비종속적인(scale-invariant)프랙탈 특성을 이용하여 매개변수를 최소화 할 수 있는 장점을 가진 기법으로 한강유역 1Km내외 강우장을 만들어 topographic effect를 첨가하고자 한다.

  • PDF

신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구 (Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components)

  • 이강용;황인범
    • 비파괴검사학회지
    • /
    • 제21권1호
    • /
    • pp.46-53
    • /
    • 2001
  • 음향방출 신호를 이용하여 분류기를 설계하는 과정에서의 특징값 선택법에 관해 연구하였다. 분류기는 역전파법을 이용한 신경망 분류기를 사용하였다. Fisher's criterion, class mean scatter criterion, eigenvector analysis와 함께 본 논문에서 새로 제안하는 특징값 공간에서의 특징값 좌표사이의 차이를 이용하는 2-D criterion, 3-D criterion을 이용해서 특징값을 선택하고 각각에 대해 분류기를 설계하여, 인식률과 수렴속도를 비교하였다. 분류를 위한 자료를 얻기 위하여 용접부 결함시편과 로터리 압축기 금속 접촉부 결함시편을 사용하였다. 인식률 면에서 2-D criterion과 3-D criterion이 우수한 결과를 나타내었다.

  • PDF

가중 퍼지소속함수 기반 신경망과 웨이블릿 변환을 이용한 심실 빈맥/세동 검출 (Detecting Ventricular Tachycardia/Fibrillation Using Neural Network with Weighted Fuzzy Membership Functions and Wavelet Transforms)

  • 신동근;장진흥;이상홍;임준식;이정현
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.19-26
    • /
    • 2009
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with weighted Fuzzy Membership Functions, NEWFM)과 웨이블릿 변환(wavelet transforms, WT)을 이용하여 Creighton University Ventricular Tachyarrhythmia Database(CUBD)의 심전도 신호로부터 정상리듬(normal sinus rhythm, NSR)과 심실 빈맥/세동(Ventricular tachycardia/fibrillation VT/VF)을 검출하는 방안을 제시하고 있다. NEWFM에서 사용할 특정입력을 추출하기 위해서 첫 번째 단계에서는 웨이블릿 변환을 이용하여 스케일 레벨 3과 레벨 4의 주파수 대역에서 d3과 d4의 계수들을 각각 선택하였다. 두 번째 단계에서는 d3과 d4의 계수들에 대한 구간별 표준편차를 이용하여 8개의 특징입력을 추출하였다. NEWFM은 이들 8개의 특정입력을 이용하여 정상리듬과 심실 빈맥/세동을 검출하였고 그 결과로 90.1%의 검출성능을 나타내었다.

적대적 공격과 뉴럴 렌더링 연구 동향 조사 (Survey Adversarial Attacks and Neural Rendering)

  • 이예진;심보석;허종욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.243-245
    • /
    • 2022
  • 다양한 분야에서 심층 신경망 기반 모델이 사용되면서 뛰어난 성능을 보이고 있다. 그러나 기계학습 모델의 오작동을 유도하는 적대적 공격(adversarial attack)에 의해 심층 신경망 모델의 취약성이 드러났다. 보안 분야에서는 이러한 취약성을 보완하기 위해 의도적으로 모델을 공격함으로써 모델의 강건함을 검증한다. 현재 2D 이미지에 대한 적대적 공격은 활발한 연구가 이루어지고 있지만, 3D 데이터에 대한 적대적 공격 연구는 그렇지 않은 실정이다. 본 논문에서는 뉴럴 렌더링(neural rendering)과 적대적 공격, 그리고 3D 표현에 적대적 공격을 적용한 연구를 조사해 이를 통해 추후 뉴럴 렌더링에서 일어나는 적대적 공격 연구에 도움이 될 것을 기대한다.

심전도 신호의 기저선 잡음 제거를 위한 적응 신경망 필터 설계 ((A Design of Adaptive Neural Network Filter to Remove the Baseline Wander of ECG))

  • 이건기;김영일;이주원;조원래
    • 전자공학회논문지SC
    • /
    • 제39권1호
    • /
    • pp.76-84
    • /
    • 2002
  • 본 논문은 심전도 신호의 잡음제거에 있어 ST 세그먼트의 왜곡을 최소화함과 동시에 기저선 변동 잡음을 제거하기 위한 연구이다. 일반적인 표준필터와 적응필터는 심전도신호의 기저선 변동잡음을 제거하기 위해 주로 사용된다. 그러나 표준필터는 기저선 잡음의 시변 특성 때문에 고정된 주파수 대역으로 잡음을 제거하기가 어렵고, 적응필터를 이용하여 필터링 할 경우에는 참조신호를 설정하기가 매우 어렵다. 따라서 본 연구에서는 시-지연신경망과 RBF 신경망을 이용하여 참조신호 없이 잡음을 제거하는 새로운 구조의 적응 필터를 제안하였다. 그리고 제안된 기법의 성능을 평가하기 위해 MIT-BIH 심전도데이터를 이용하였고, 실험결과에서 평균 잡음 제거비는 표준 필터가 -16.3[dB], 적응 필터가 -44.9[dB]이고 제안된 필터의 경우에는 -53.3[dB]로 나타나 다른 필터의 경우보다 우수한 잡음 제거 성능을 보였다.

건물 형태 발생을 위한 3차원 선소의 계층적 군집화 (Hierarchical Grouping of Line Segments for Building Model Generation)

  • 한지호;박동철;우동민;정태경;이윤식;민수영
    • 전기전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.95-101
    • /
    • 2012
  • 위성 영상에서 건물형태를 발생하기위한 새로운 접근방식이 본 논문에서 제안되었다. 제안된 알고리즘은 낮은 수준의 선소들을 연결하고 유사한 개체들을 군집화하기 위해 선소 측정함수가 적용된 신경망이다. 제안된 신경망은 윤곽선 영상에서 추출된 윤곽선들을 군집화 목적으로 사용된다. 본 논문에서는 3차원 선소의 오류에 의한 군집화 결과의 비현실적 건물모델의 발생을 근원적으로 차단하기 위하여, 높이 정보를 이용한 계층적 군집화를 제안하였다. 제안된 새로운 거리척도의 신경망과 군집화를 통해 성공적인 건물모델의 재구성을 실험으로 보여주었다.

온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발 (Development of a deep neural network model to estimate solar radiation using temperature and precipitation)

  • 강대균;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제21권2호
    • /
    • pp.85-96
    • /
    • 2019
  • 일사량은 자연 생태계와 농업 생태계에서 에너지 수지와 물 순환을 추정하는데 중요한 변수이다. 일별 일사량을 추정하기 위해 심층 신경망(DNN) 모델이 개발되었다. 일조시간 등의 변수보다 기상 관측소에서의 가용성이 더 높은 온도와 강수량이 심층 신경망 모델의 입력 자료로 사용되었다. five-fold crossvalidation 을 사용하여 심층 신경망을 훈련시키고 검증하였다. 국내 15 개의 기상 관측소에서 30 년 이상 장기간의 기상 자료가 수집되었다. Cross-validation을 통해 얻어진 심층 신경망 모델은 수원 지역 기상 관측소의 일별 일사량 추정치에 대해 비교적 작은 RMSE($3.75MJ\;m^{-2}\;d^{-1}$) 값을 가졌다. 심층 신경망 모델은 수원 지역 기상 관측소의 일사량의 변위의 약 68%를 설명했다. 1985 년과 1998 년의 일사량 관측값은 일조시간에 비해 상당히 낮은 값이 관측되었다. 이는 후속 연구에서 일사량 관측 데이터의 품질 평가가 필요할 것임을 시사했다. 해당 연도의 데이터를 분석에서 제외했을 때, 심층 신경망 모델의 추정값은 통계적 수치가 약간 높게 나타났다. 예를 들어, $R^2$ 와 RMSE 의 값은 각각 0.72 와 $3.55MJ\;m^{-2}\;d^{-1}$ 이었다. 심층 신경망 모델은 기온과 강수량을 통해 일사량을 추정하는데 유용하며, 이는 미래 기후 시나리오 자료에 대해서 활용할 수 있을 것이다. 따라서, 공간에 대한 제약이 완화된 심층 신경망 모델은 작물 모델의 입력 자료로 일사량이 필요한 작물 생산성에 대한 기후 변화 영향 평가에 유용하게 활용될 수 있을 것이다.