• 제목/요약/키워드: 3-D 신경망

검색결과 220건 처리시간 0.025초

입출력구조와 신경망 모델에 따른 딥러닝 기반 정규화 기법의 성능 분석 (Performance Analysis of Deep Learning-based Normalization According to Input-output Structure and Neural Network Model)

  • 류창수;김근환
    • 한국산업정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.13-24
    • /
    • 2024
  • 본 논문에서는 다양한 신경망 모델과 입출력 구조에 따른 정규화 기법의 성능을 비교 분석하였다. 분석을 위해 균등한 잡음과 최대 3개의 간섭 신호가 있는 잡음 환경에 대한 시뮬레이션 기반의 데이터 세트를 사용하였다. 실험 결과, 잡음 분산을 직접 출력하는 End-to-End 구조에 대해서 1-D 콘볼루션 신경망과 BiLSTM 모델을 사용할 경우 우수한 성능을 보였으며, 특히 간섭 신호에 대해 강건한 것으로 분석되었다. 이러한 결과는 다층 퍼셉트론 신경망과 트랜스포머보다 1-D 콘볼루션 신경망 및 BiLSTM 모델이 귀납적 편향이 강하기 때문에 나타난 것으로 판단된다. 이 논문의 분석 결과는 향후 딥러닝 기반 정규화 기법 연구에 유용한 기준점으로 활용될 수 있을 것으로 기대된다.

레이저 슬릿빔과 신경망을 이용한 3차원 영상인식 (3-D Image Processing Using Laser Slit Beam and Neural Networks)

  • 김병갑;강이석;최경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.118-122
    • /
    • 1997
  • This paper presents a 3d image processing which uses neural networks to combine a 2D vision camera and a laser slit beam. A laser slit beam from laser source is slitted by a set of cylindrical lenses and the line image of the slit beam on the object is used to estimate the object parameters. The neural networks allow to get the 3D image parameters such as the size, the position and the orientation form the line image without knowing the camera intrinsic parameters.

  • PDF

인공신경망 기반 손동작 인식기의 설계 및 구현 (Design and Implementation of Hand Gesture Recognizer Based on Artificial Neural Network)

  • 김민우;정우재;조재찬;정윤호
    • 한국항행학회논문지
    • /
    • 제22권6호
    • /
    • pp.675-680
    • /
    • 2018
  • 본 논문에서는 RCE (restricted coulomb energy) 신경망을 이용한 손동작 인식기를 제안하고, 이의 실시간 학습 및 인식을 위한 하드웨어 구현 결과를 제시한다. RCE 신경망은 네트워크 구조가 학습에 따라 유동적이며, 학습 알고리즘이 여타 신경망에 비해 비교적 간단하기 때문에 실시간 학습 및 인식이 가능하므로 손동작 인식기에 적합한 장점을 갖는다. FPGA기반 검증 플랫폼을 사용하여 3D 숫자 데이터 셋을 생성하였으며, 설계된 손동작 인식기는 3D 숫자 데이터 셋에 대해 98.8%의 인식 정확도를 나타냈다. 제안된 손동작 인식기는 Intel-Altera cyclone IV FPGA기반 구현 결과, 26,702개의 logic elements로 구현 가능함을 확인하였으며, 70MHz의 동작 주파수로 실시간 학습 및 인식 결과에 대한 검증을 수행하였다.

자세 추정을 위한 모션 캡처 데이터 복원 (Restoring Motion Capture Data for Pose Estimation)

  • 윤여수;박현준
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.5-7
    • /
    • 2021
  • 자세 추정을 위한 모션 캡처 데이터 파일에는 주변 환경과 움직임의 정도에 따라 부정확한 데이터가 존재할 수 있으므로, 이를 보정하는 작업이 필요하다. 기존에는 직접 후처리 과정을 통해 부정확한 데이터를 복원하였으나, 최근에는 자동화된 방법으로 LSTM, R-CNN 등 다양한 종류의 신경망을 사용한다. 하지만 신경망 기반의 데이터 복원 방법들은 컴퓨터 자원을 많이 요구하므로, 본 논문에서는 신경망 기반의 방법보다 자원 사용량은 낮추면서 데이터 복원율은 유지하는 방법을 제안한다. 제안하는 방법은 자세 측정 데이터(c3d)를 활용하여 부정확한 자세 데이터를 자동으로 복원한다. 실험 결과, 데이터의 부정확한 정도에 따라 89%에서부터 99% 정도의 데이터 복원율을 보였다.

  • PDF

이중흐름 3차원 합성곱 신경망 구조를 이용한 효율적인 손 제스처 인식 방법 (An Efficient Hand Gesture Recognition Method using Two-Stream 3D Convolutional Neural Network Structure)

  • 최현종;노대철;김태영
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.66-74
    • /
    • 2018
  • 최근 가상환경에서 몰입감을 늘리고 자유로운 상호작용을 제공하기 위한 손 제스처 인식에 대한 연구가 활발히 진행되고 있다. 그러나 기존의 연구는 특화된 센서나 장비를 요구하거나, 낮은 인식률을 보이고 있다. 본 논문은 정적 손 제스처와 동적 손 제스처 인식을 위해 카메라 이외의 별도의 센서나 장비 없이 딥러닝 기술을 사용한 손 제스처 인식 방법을 제안한다. 일련의 손 제스처 영상을 고주파 영상으로 변환한 후 손 제스처 RGB 영상들과 이에 대한 고주파 영상들 각각에 대해 덴스넷 3차원 합성곱 신경망을 통해 학습한다. 6개의 정적 손 제스처와 9개의 동적 손 제스처 인터페이스에 대해 실험한 결과 기존 덴스넷에 비해 4.6%의 성능이 향상된 평균 92.6%의 인식률을 보였다. 본 연구결과를 검증하기 위하여 3D 디펜스 게임을 구현한 결과 평균 34ms로 제스처 인식이 가능하여 가상현실 응용의 실시간 사용자 인터페이스로 사용가능함을 알 수 있었다.

신경망을 이용한 소프트웨어 개발노력 추정 (Software Development Effort Estimation Using Neural Network Model)

  • 이상운
    • 정보처리학회논문지D
    • /
    • 제8D권3호
    • /
    • pp.241-246
    • /
    • 2001
  • 소프트웨어공학에서 소프트웨어 측정분야는 30년 이상 수많은 연구가 있어 왔으나 아직까지 구체적인 소프트웨어 비용추정 모델이 없는 실정이다. 만약 소프트웨어 비용-개발노력을 측정하려면 소프트웨어 규모를 추정해야 한다. 많은 소프트웨어 척도가 개발되었지만 가장 일반적인 척도가 LOC(line of code)와 FPA(Function Point Analysis)이다. FPA는 소프트웨어 규모를 측정하는데 LOC를 사용할 때의 단점을 극복할 수 있는 기법이다. 본 논문은 FP와 기능 구성요소 형태들로 측정된 소프트웨어 규모로 소프트웨어 개발 노력을 추정하는 신경망 모델을 제안한다. 24개 소프트웨어 개발 프로젝트 사례연구를 통해 적합한 신경망 모델을 제시하였다. 또한, 희귀분석 모델과 신경망 모델을 비교하여 신경망 모델의 추정 정확성이 보다 좋음을 보였다.

  • PDF

보로노이 공간분류를 이용한 오류 역전파 신경망의 설계방법 (A Design Method for Error Backpropagation neural networks using Voronoi Diagram)

  • 김홍기
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.490-495
    • /
    • 1999
  • 본 논문에서는 보로노이 다이아그램을 이용하여 오류 역전파 신경망의 초기값을 결정할수 있는 VoD_EBP를 제안하였다. VoD_EBP는 초기 연결 가중치와 임계값을 공학적 계산방법으로 결정함으로써 기존의 EBP에서 자주 발생하는 학습 마비 현상을 피할수 있고 초기부터 빠른 속도로 학습이 진행되므로 학습횟수를 단축시킬수 있다, 또한 VoD_EBP는 은닉층의 노드 수를 보로노이 다각형으로 구분된 클러스터들의 개수로 정할 수있어 신경망 설계에 신뢰성을 향상시켰다. 제시된 VoD_EBP의 효율성을 입증하기 위해 간단한 실험으로 2차원 입력벡터를 갖는 XOR 문제와 3차원 패리티 코드 검출 문제에 대하여 적용하여 보았다. 그 결과 임의의 초기값으로 설정하였던 EBP보다 훨씬 빠르게 학습이 종료되었고, 지역 최소치에 빠져 학습이 진행되지 못하는 현상이 발생하지 않았다.

  • PDF

자기조직형 신경망 이론을 이용한 국도 통행시간 추정 알고리즘 (Development of Travel Time Estimation Algorithm for National Highway by using Self-Organizing Neural Networks)

  • 도명식;배현숙
    • 대한토목학회논문집
    • /
    • 제28권3D호
    • /
    • pp.307-315
    • /
    • 2008
  • 본 연구의 목적은 수도권 남부 국도 ITS 시범구간인 국도 3호선의 장지IC~곤지암IC구간에서 수집되는 교통자료를 기반으로 자기조직형 신경망 이론을 도입하여 국도구간의 통행시간 추정모형을 개발하는 방안을 제시하는 것이다. 지점 검지기 적정 설치위치와 구간의 연장 및 연도의 토지이용특성이 단속류의 구간통행시간에 영향을 미침을 확인하였으며, 구간 통행시간 추정을 위해 기존의 인공신경망 모형이 가지는 추가학습이 불가능하다는 단점과 신경망 구조의 최적구성이 어려운 점 등을 고려하여 자기조직형 인공신경망 구조방법을 도입하였다. 통행시간 추정결과 기존 검지기에서 수집된 자료와 최적위치에서 수집된 자료를 이용하여 모형을 검증한 결과 통행특성을 가장 잘 반영하는 지점자료를 활용한 모형의 추정력이 우수한 것으로 나타났다. 이러한 시도는 향후 국도 ITS 사업의 설계에서 검지기의 설치 위치 선정에 응용할 수 있을 것으로 기대된다.

산란계의 전염성 기관지염을 예측하기 위한 인공신경망 모형의 개발 (Development an Artificial Neural Network to Predict Infectious Bronchitis Virus Infection in Laying Hen Flocks)

  • 박선일;권혁무
    • 한국임상수의학회지
    • /
    • 제23권2호
    • /
    • pp.105-110
    • /
    • 2006
  • 2003년 5월부터 2005년 11월까지 산란계의 전염성기관지염(IB) 예찰 프로그램에 등록한 농장에 대한 역학조사에서 얻은 자료에 근거하여 IB 감염을 확인할 수 있는 모형을 구축하기 위하여 16개의 입력 뉴런, 3 개의 은닉 뉴런, 1개의 출력 뉴런으로 구성된 3층 인공신경망 모형을 개발하였다. 총 86개의 계군 중 77개는 훈련자료에 할당하고 나머지 9개는 검정자료로 무작위로 할당하여 back-propagation algorithm으로 신경망 훈련을 수행하였다. 입력 뉴런은 산란계군의 특성, 사양관리, 계군의 크기 등 16개의 역학조사 항목을 사용하였으며 출력 뉴런은 IB 감염의 유무로 투입하였다. 훈련된 신경망을 검정자료에 적용하여 민감도와 특이도를 산출하였으며 진단의 정확도는 receiver operating characteristic (ROC) 곡선을 사용하여 곡선 밑의 면적(AUC)을 계산하여 평가하였다. 입력 뉴런의 특성과 훈련모수를 변경하면서 다양한 신경망을 구성하였으며 최적의 신경망으로 확인된 IBV_D1 신경망의 경우 훈련자료에 대하여 77건 중 73건을 올바르게 판단하여 94.8%의 정확도를 보였다. 민감도와 특이도는 각각 95.5% (42/44, 95% CI, 84.5-99.4)와 93.9% (31/33, 95% CI, 79.8-99.3)로 나타났다. 훈련된 신경망을 검정자료에 적용하여 ROC 곡선을 작성한 결과 AUC는 전체의 94.8% (SE=0.086, 95% CI 0.592-0.961)를 차지하는 우수한 모형으로 나타났다. ROC 곡선에서 기준을 0.7149 이상으로 판단할 때 진단의 정확도가 88.9%로 가장 높았으며 100%의 민감도를 달성하였다. 이러한 민감도와 특이도에서 44%의 IB 유병률을 가정할 때 IBV_D1 모형은 80%의 양성예측도와 100%의 음성예측도를 보였다. 이러한 소견에 근거할 때 본 연구에서 구축한 신경망 모형은 산란계군에서 IB의 존재를 확인하기 위한 목적에 성공적으로 응용될 수 있을 것으로 판단되었다.

스크린 투영 방식의 거품 효과를 개선하기 위한 노이즈 제거 신경망 (Denoising neural network to improve the foam effect via screen projection method)

  • 김종현;김동희;김수균
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.663-666
    • /
    • 2021
  • 본 논문에서는 바다와 같은 스케일이 큰 장면인 물 시뮬레이션에서 표현되는 거품 효과(Foam effects)를 노이즈 없이 디테일하게 표현할 수 있는 프레임워크를 소개한다. 거품이 생성될 위치와 거품 입자의 이류는 기존의 접근법인 스크린 투영 방법을 통해 계산한다. 이 과정에서 중요한 것이 투영맵이지만 이산화된 스크린 공간에 운동량을 투영하는 과정에서 노이즈가 발생한다. 본 논문에서는 노이즈 제거 신경망(Denoising neural network)을 활용하여 이 문제를 효율적으로 풀어낸다. 투영맵을 통해 거품이 생성될 영역이 선별되면 2D공간을 3D공간으로 역변환(Inverse transformation)하여 거품 입자를 생성한다. 결과적으로 깔끔한 거품 효과뿐만 아니라, 노이즈 제거 과정으로 인해 소실되는 거품 없이 안정적으로 거품 효과를 만들어냈다.

  • PDF