• Title/Summary/Keyword: 3-D 신경망

Search Result 220, Processing Time 0.026 seconds

Quadratic Sigmoid Neural Equalizer (이차 시그모이드 신경망 등화기)

  • Choi, Soo-Yong;Ong, Sung-Hwan;You, Cheol-Woo;Hong, Dae-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.123-132
    • /
    • 1999
  • In this paper, a quadratic sigmoid neural equalizer(QSNE) is proposed to improve the performance of conventional neural equalizer in terms of bit error probability by using a quadratic sigmoid function as the activation function of neural networks. Conventional neural equalizers which have been used to compensate for nonlinear distortions adopt the sigmoid function. In the case of sigmoid neural equalizer, each neuron has one linear decision boundary. So many neurons are required when the neural equalizer has to separate complicated structure. But in case of the proposed QSNF and quadratic sigmoid neural decision feedback equalizer(QSNDFE), each neuron separates decision region with two parallel lines. Therefore, QSNE and QSNDFE have better performance and simpler structure than the conventional neural equalizers in terms of bit error probability. When the proposed QSNDFE is applied to communication systems and digital magnetic recording systems, it is an improvement of approximately 1.5dB~8.3dB in signal to moise ratio(SNR) over the conventional decision feedback equalizer(DEF) and neural decision feedback equalizer(NDFE). As intersymbol interference(ISI) and nonlinear distortions become severer, QSNDFE shows astounding SNR shows astounding SNR performance gain over the conventional equalizers in the same bit error probability.

  • PDF

Optimal Network Selection Method for Artificial Neural Network Downscaling Method (인공신경망 Downscaling모형에 있어서 최적신경망구조 선택기법)

  • Kang, Boo-Sik;Ryu, Seung-Yeop;Moon, Su-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1605-1609
    • /
    • 2010
  • CGCM3.1 SRES B1 시나리오의 2D 변수들을 입력값으로 인공신경망 모형을 이용한 스케일 상세화기법으로 강부식(2009)은 소양강댐 유역의 월 누적강수 경향분석을 실시하였다. 원시 GCM 시나리오를 스케일 상세화 시키기 위한 기법의 하나로 인공신경망 모형을 사용할 수 있는데, 이 경우 GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면 근처에서의 일평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수를 잠재적인 예측인자로 사용하여 신경망을 구성하게 된다. 입력변수세트의 구성은 인공신경망의 계산 효율을 좌우하는 중요한 요소라 할 수 있다. 본 연구에서는 변수의 물리적 특성을 고려하여 순차적인 변수선택을 통한 신경망 입력변수 세트를 구성하고 입력세트 간의 학습성과 비교를 통하여, 최적 입력변수 선정 및 신경망의 학습효과를 높일 수 있는 방법에 대해 연구하였다. 물리적 상관성이 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 하여 순차적인 케이스를 학습해본 결과 huss와 ps를 입력변수로 하는 케이스에 대해서 적은 오차와 높은 상관성을 보였다, 또한, 신경망의 학습 효과를 높이기 위해 홍수기와 비홍수기로 구분하여 학습한 결과 홍수기와 비홍수기로 구분하여 신경망을 구성하였을 경우가 향상된 모의값을 나타내었다. 기후변화모의자료는 CCCma(Canadian Center for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 관측값으로는 AWS에서 제공된 일 누적강수를 사용하였다. 인공신경망의 학습기간은 1997년부터 2000년이며, 검증기간은 2001년부터 2004년으로 구성하였다.

  • PDF

Learning Recurrent Neural Networks for Activity Detection from Untrimmed Videos (비분할 비디오로부터 행동 탐지를 위한 순환 신경망 학습)

  • Song, YeongTaek;Suh, Junbae;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.892-895
    • /
    • 2017
  • 본 논문에서는 비분할 비디오로부터 이 비디오에 담긴 사람의 행동을 효과적으로 탐지해내기 위한 심층 신경망 모델을 제안한다. 일반적으로 비디오에서 사람의 행동을 탐지해내는 작업은 크게 비디오에서 행동 탐지에 효과적인 특징들을 추출해내는 과정과 이 특징들을 토대로 비디오에 담긴 행동을 탐지해내는 과정을 포함한다. 본 논문에서는 특징 추출 과정과 행동 탐지 과정에 이용할 심층 신경망 모델을 제시한다. 특히 비디오로부터 각 행동별 시간적, 공간적 패턴을 잘 표현할 수 있는 특징들을 추출해내기 위해서는 C3D 및 I-ResNet 합성곱 신경망 모델을 이용하고, 시계열 특징 벡터들로부터 행동을 자동 판별해내기 위해서는 양방향 BI-LSTM 순환 신경망 모델을 이용한다. 대용량의 공개 벤치 마크 데이터 집합인 ActivityNet 비디오 데이터를 이용한 실험을 통해, 본 논문에서 제안하는 심층 신경망 모델의 성능과 효과를 확인할 수 있었다.

A Dynamic Three Dimensional Neuro System with Multi-Discriminator (다중 판별자를 가지는 동적 삼차원 뉴로 시스템)

  • Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.585-594
    • /
    • 2007
  • The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.

2D and 3D Hand Pose Estimation Based on Skip Connection Form (스킵 연결 형태 기반의 손 관절 2D 및 3D 검출 기법)

  • Ku, Jong-Hoe;Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1574-1580
    • /
    • 2020
  • Traditional pose estimation methods include using special devices or images through image processing. The disadvantage of using a device is that the environment in which the device can be used is limited and costly. The use of cameras and image processing has the advantage of reducing environmental constraints and costs, but the performance is lower. CNN(Convolutional Neural Networks) were studied for pose estimation just using only camera without these disadvantage. Various techniques were proposed to increase cognitive performance. In this paper, the effect of the skip connection on the network was experimented by using various skip connections on the joint recognition of the hand. Experiments have confirmed that the presence of additional skip connections other than the basic skip connections has a better effect on performance, but the network with downward skip connections is the best performance.

3D human motion estimation using RBF networks (RBF 신경망을 이용한 3D 동작 추정)

  • Kim, Hye-Jeong;Lee, Kyoung-Mi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.485-488
    • /
    • 2006
  • 본 논문에서는 두 대의 카메라를 직각으로 배치하여 얻은 동영상을 통해 3차원 인체 동작을 추정하는 방법을 제안한다. 제안된 시스템은 실루엣에서 전역 특징과 지역 특징을 추출하여 이 특징들을 정적 특징과 동적 특징으로 다시 나눈다. 모든 실루엣 특징은 RBF 신경망의 입력으로 이용되어 동작을 분류한다. 본 논문에서 제안된 신경망 동작 추정 시스템은 유아들의 동작 교육에 적용되었다. 동작 교육을 위해 제시되는 기본 동작은 걷기, 뛰기, 앙감질 등의 이동 동작과 구부리기, 뻗기, 균형잡기, 회전하기 등 비 이동 동작으로 구분되고, 이 7 가지 기본 동작은 성공적으로 추정되었다.

  • PDF

Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images (삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측)

  • Hangil You;Gun Jin Yun
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.40-45
    • /
    • 2024
  • In this research, we introduce a novel approach that employs a 3D convolutional neural network (CNN) model to predict the permeability of Gas Diffusion Layers (GDLs). For training the model, we create an artificial dataset of GDL representative volume elements (RVEs) by extracting morphological characteristics from actual GDL images obtained through X-ray tomography. These morphological attributes involve statistical distributions of porosity, fiber orientation, and diameter. Subsequently, a permeability analysis using the Lattice Boltzmann Method (LBM) is conducted on a collection of 10,800 RVEs. The 3D CNN model, trained on this artificial dataset, well predicts the permeability of actual GDLs.

Real-Time Visual Grounding for Natural Language Instructions with Deep Neural Network (심층 신경망을 이용한 자연어 지시의 실시간 시각적 접지)

  • Hwang, Jisu;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.487-490
    • /
    • 2019
  • 시각과 언어 기반의 이동(VLN)은 3차원 실내 환경에서 실시간 입력 영상과 자연어 지시들을 이해함으로써, 에이전트 스스로 목적지까지 이동해야 하는 인공지능 문제이다. 이 문제는 에이전트의 영상 및 자연어 이해 능력뿐만 아니라, 상황 추론과 행동 계획 능력도 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각과 언어 기반의 이동(VLN) 작업을 위한 새로운 심층 신경망 모델을 제안한다. 제안모델에서는 입력 영상에서 합성곱 신경망을 통해 추출하는 시각적 특징과 자연어 지시에서 순환 신경망을 통해 추출하는 언어적 특징 외에, 자연어 지시에서 언급하는 장소와 랜드마크 물체들을 영상에서 별도로 탐지해내고 이들을 추가적으로 행동 선택을 위한 특징들로 이용한다. 다양한 3차원 실내 환경들을 제공하는 Matterport3D 시뮬레이터와 Room-to-Room(R2R) 벤치마크 데이터 집합을 이용한 실험들을 통해, 본 논문에서 제안하는 모델의 높은 성능과 효과를 확인할 수 있었다.

3D face recognition based on radial basis function network (방사 기저 함수 신경망을 이용한 3차원 얼굴인식)

  • Yang, Uk-Il;Sohn, Kwang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.82-92
    • /
    • 2007
  • This paper describes a novel global shape (GS) feature based on radial basis function network (RBFN) and the extraction method of the proposed feature for 3D face recognition. RBFN is the weighted sum of RBfs, it well present the non-linearity of a facial shape using the linear combination of RBFs. It is the proposed facial feature that the weights of RBFN learned by the horizontal profiles of a face. RBFN based feature expresses the locality of the facial shape even if it is GS feature, and it reduces the feature complexity like existing global methods. And it also get the smoothing effect of the facial shape. Through the experiments, we get 94.7% using the proposed feature and hidden markov model (HMM) to match the features for 100 gallery set with those for 300 test set.

On Development the Stable Learning Algorithm for Recurrent Neural Network Control System (귀환 신경망의 안정적 학습 알고리듬 개발)

  • 연정흠;원경재;정일훈;진흥태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.3-11
    • /
    • 1997
  • One of major research areas in the recurrent neural network is to develop stable learning algorithm. In this paper, the stable learning algorithm is developed by utilizing the evolutionary programming. The effectiveness of the proposed learning algorithm will be verified by simulating two d.0.f. robot manipulator.

  • PDF