• Title/Summary/Keyword: 3-Chamber

Search Result 3,226, Processing Time 0.031 seconds

Study for Flow Phenomenon in the Circulation Water Pump Chamber using the Flow-3D Model (Flow-3D 모형을 이용한 순환수취수펌프장 내 흐름현상 연구)

  • Ha, Sung-Won;Kim, Tae-Won;Choi, Joo-Hwan;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.580-589
    • /
    • 2019
  • Indonesia has a very short supply of electricity. As a solution to this problem, plans for construction of thermal power plants are increasing. Thermal power plant require the cooling water system to cool the overheated engine and equipment that accompany power generation, and the circulation water pump chamber among the cooling water system are generally designed according to the ANSI (1998) standard. In this study, the design criterion $20^{\circ}$ for the spreading angle of the ANSI (1998) of the layout of the circulating water pump chamber can not be satisfied on the K-coal thermal power plant site condition in Indonesia. Therefore, 3-D numerical model experiment was carried out to obtain a hydraulically stable flow and stable structure. The Flow-3D model was used as numerical model. In order to examine the applicability of the Flow-3D model, the flow study results around the rectangular structure of Rodi (1997) and the numerical analysis results were compared around the rectangular structures. The longitudinal velocity distribution derived from numerical analysis show good agreement. In order to satisfy the design velocity in the circulating water pump chamber, a rectangular baffle favoring velocity reduction was applied. When the approach velocity into the circulating water pump chamber was occurred 1.5 m/s ~ 2.5 m/s, the angle of the separation flow on the baffle was occurred about $15^{\circ}{\sim}20^{\circ}$. By placing the baffle below the separation flow angle downstream, the design velocity of less than 0.5 m/s was satisfied at inlet bay.

Domestic Construction of a Large Thermal Vacuum Chamber for Space Environment Simulation (우주환경모사를 위한 대형열진공챔버 국산화 구축)

  • Cho, Hyok-Jin;Moon, Guee-Won;Seo, Hee-Jun;Lew, Sang-Hoon;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.64-73
    • /
    • 2007
  • A Large thermal vacuum chamber (LTVC) for space environment simulation on large satellites was successfully developed and constructed by KARI (Korea Aerospace Research Institute) in Korea with a local company. This chamber has an effective diameter of 8 meters and depth of 10 meters, and is composed of vacuum system, thermal control system, and anti-vibration system. Temperature below $-190^{\circ}C$ is maintained over the thermal shroud wrapping a satellite under $3.7{\times}10^{-5}Pa$ ($5{\times}10^{-7}torr$) vacuum level, and optical test can be done in this chamber by seismic mass with $10^{-5}g_{rms}$ or lower vibration level. In addition, the shroud temperature can be increased up to $123^{\circ}C$ using halogen lamps. Chamber control program based on PLC (Programmable Logic Controller) could control this large thermal vacuum chamber automatically.

  • PDF

Optimization and Improvements of Field Uniformity in a Reverberation Chamber with Schroeder Diffusers (Schroeder 확산기를 이용한 전자파 잔향실내의 필드 균일도 향상 및 최적화에 관한 연구)

  • Kim, Jung-Hoon;Rhee, Joong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.372-378
    • /
    • 2007
  • This paper presents an improvement of field uniformity in a reverberation chamber with QRDs(Quadratic Residue Diffuser) and also shows the optimal dimension of the QRDs. The QRD is designed for $1{\sim}3\;GHz$ frequency band and the FDTD(finite-Difference Time-Domain) method is used to analyze the field characteristics. At 2 GHz, the standard deviation of test volume in the reverberation chamber is the smallest when the QRD has $30{\sim}60\;%$ coverage of one side of the reverberation chamber and the field uniformity is worsened when the coverage of the QRD is either below 20 % or above 70 % of the area of the side wall. Particularly, the standard deviation of test volume in the reverberation chamber with 30 % coverage of QRD is improved by 1.53 dB compared to that of the reference chamber with no QRDs.

Study on exhaust emission at the swirl chamber in small diesel engine (와류실식 소형디젤기관의 배기 성능에 관한 연구)

  • Myung, Byung-Soo;Lim, Jung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • The purpose of this research is to investigate the performance of swirl combustion chamber diesel engine by changing the jet passage area, the depth and shape of the piston top cavity (main chamber). The performance of diesel engine with newly changed swirl combustion chamber was tested through the experimental conditions as engine speed, load and injection timing etc. The test results were compared and analyzed. And another purpose of this research is to make a new diesel engine that is satisfied fuel consumption and regulation value of exhaust gas. 1. The rate of fuel consumption was affected significantly by the jet passage area at the high speed and load than low speed and low load. The influence of jet passage large area was proven to decrease the rate of fuel consumption. 2. Smoke was affected significantly by the depth of the piston top cavity, but exhaust temperature and the rate of fuel consumption wasn't affected. The rate of fuel consumption was affected by changing injection timing. 3. The rate of fuel consumption, exhaust temperature and Smoke were affected significantly by the shape of the piston top cavity from rectangular to trapezoid. That is we have all high value. The exhaust smoke density and exhaust gas temperature depended sensitively on variation of the injection timing rather than the shape of the combustion chamber within the experimental conditions. 4. We made a new diesel engine that is satisfied design target values(sfc=190 g/hr, NOx + THC=6.0 g/KWh, PM=0.3 KWh), the rate of fuel consumption and emission standard etc., through changing injection timing at the maximum torque point and rated power point. Although we have a little high NOx value.

  • PDF

Improved Field Uniformity Characteristics in a Reverberation Chamber with a CRD (CRD를 이용한 전자파 잔향실 내 전기장 균일도 향상)

  • Son, Yong-Ho;Rhee, Joong-Geun;Kim, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.79-84
    • /
    • 2007
  • This paper presents an improved field uniformity in a reverberation chamber, that can be alternatively used for the analysis and the measurement of electromagnetic interference and immunity, with a designed CRD(Cubical Residue Diffuser) that have various dimensions. The Schroeder type CRD is designed for $1\sim3$ GHz band and the FDTD(Finite Difference Time Domain) method is used to analyze the field characteristics. At 2 GHz, the standard deviation of test volume in the reverberation chamber is the smallest and has a good field distribution with a CRD of $40\sim80%$ dimension of one side of the reverberation chamber. The Electric field uniformity gets worse when the dimension of a CRD is either below 40 % or above 80 % of the side wall. The result shows that the standard deviation of the test volume in the reverberation chamber with a CRD of 44 % dimension is improved by 1 dB compared with that of the reverberation chamber with a CRD of 100 % dimension.

Structural Safety Evaluation of Multi-Pressure Integrated Chamber for Sport-Multi-Artificial Environment System (스포츠 멀티 인공환경 시스템을 위한 다중압력 일체형 챔버의 구조안전성 평가)

  • Lee, Joon-Ho;Kang, Sang-Mo;Chae, Jae-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.324-328
    • /
    • 2019
  • There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sport-multi environment simultaneously. In this study, we design a multi-pressure (positive / atmospheric / negative pressure) integrated chamber that can be used for the sport-multi-artificial environment system. We presented new chamber designs with enlarged space for the tall users and then carried out structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell and the entrance, the structural safety of the chamber was evaluated with the allowable stress of its material. As a result of the structural analysis of the multi-pressure integrated chamber, the maximum stress for the positive pressure and negative pressure conditions was much smaller than the allowable stress of its material. And as a result of the structural safety evaluation, it was confirmed that the design of the final prototype for the chamber was structurally safe by satisfying the safety factor of 2 or more.

A Study of Germaine Tailleferre's Piano Chamber Music: Focusing on <Sonata pour deux pianos> (제르맨 타유페르의 피아노 실내악 작품 연구: <두 대의 피아노를 위한 소나타>를 중심으로)

  • Hee Jung Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.659-666
    • /
    • 2024
  • Germaine Tailleferre is the only woman composer among the French group of six composers known as "Les Six." In her 70-year career, she has left behind numerous chamber music pieces for the piano. Although her chamber music works constitute a significant portion of her overall compositions, research focusing on her piano chamber music pieces is lacking. Therefore, this study introduces a comprehensive list of Tailleferre's chamber music pieces and categorizes each piece according to its performing level of difficulty. Additionally, through a detailed analysis of her <Sonata for Two Pianos>, composed in 1974, this study aims to understand her musical style and artistic world, particularly regarding form, harmony, and melody. <Sonata for Two Pianos>, rooted in the unpretentious and light musical language characteristic of the salon style popular in Parisian cafes and music halls at the time, can be seen as a multi-layered work reflecting various musical languages such as Impressionism, and Neo-classicism. This study may contribute to a better understanding of Tailleferre's musical world and aid in discovering and expanding new literature on 20th-century piano chamber music.

Morphological Measurements of Anatomic Landmarks in Human Mandibular Molar Pulp Chambers - An in vivo Study

  • Lokade, Joyti;Rawlani, Shivlal;Baheti, Rakhi (Chandak);Roy, Shelly;Chandak, Manoj;Lohe, Vidya
    • Journal of Korean Dental Science
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Purpose: Exact knowledge of the location and dimension of the pulp chamber help to maintain the pulp healthy during operative procedure and also reduces the risk of perforation of pulp chamber during root canal treatment. This in-vivo study was carried out to measure critical morphology of pulp chamber of mandibular molar using intra-oral periapical radiograph. Materials and Methods: Mandibular molar teeth of 56 patients were evaluated. The mandibular molar teeth whose pulp chamber was not violated by caries, restoration, fracture crown and those having closed apex were included in the study. The intraoral periapical radiographs were taken with paralleling angle technique using radio-opaque grid with 1 mm space. This grid was placed directly on the film. Results: In 94% of the mandibular first molars specimens the pulp chamber ceiling was at the level of the cemento-enamel junction. The measurements showing the lowest percentage variance were buccal cusp to furcation (approximately 11%) and buccal cusp to pulp chamber ceiling (approximately 15%). The distance from the cusp tip to pulp chamber ceiling height was approximately 6.0 mm, the distance from the pulpal floor to the furcation was approximately 3.0 mm, and the average height of a pulp chamber was 1.5 to 2.0 mm. Conclusion: The exact knowledge of distances of pulp chamber from various anatomical landmarks helps in proper assessment of root canals and ultimately avoids the failure of root canal treatment.

A Simulation Study on Fluid Flowing in Micro Pump (Simulation을 통한 미세 PUMP 내에서의 유체흐름 연구)

  • 김용천;김미진;김진명;김진현;류근걸
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.233-239
    • /
    • 2002
  • The technology of joining BT (Biotechnology) with NT (Nanotechnology) must be rapidly arranged in 21c. Specially, the technical value is important more and more since the research about MEMS, which synthesizes BT and NT, is variously proceeding on the wide fields. This study by simulation shows the Fluid-Flow within micro Pump used in Bio-MEMS technology through Fluent Program. Namely, this experiment shows the most suitable external conditions and Pump Model within micro Pump by observing the flow of fluids as to the conditions of pressure, temperature and Model when the Fluid flows within micro Pump. We saw the variousness of pressure and temperature as to the existence of Chamber through examining by reference of Fluid-Flow. In the case of the existence of Chamber, the variousness of pressure and temperature is less than in the case of the non-existence of Chamber. By this simulation, we know that the Pump, which has a Chamber, affects the Fluid-Flow less than that. So we can say that it is necessary for us to design the Pump which has a Chamber.

  • PDF

Numerical Analysis of Chamber Flow and Wave Energy Conversion Efficiency of a Bottom-mounted Oscillating Water Column Wave Power Device (고정식 진동수주형 파력 발전장치의 챔버 유동 및 파에너지 변환효율 해석)

  • Koo, Weon-Cheol;Kim, Moo-Hyun;Choi, Yoon-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.388-397
    • /
    • 2010
  • A two-dimensional time-domain, potential-theory-based fully nonlinear numerical wave tank (NWT) was developed by using boundary element method and the mixed Eulerian-Lagrangian (MEL) approach for free-surface node treatment. The NWT was applied to prediction of primary wave energy conversion efficiency of a bottom-mounted oscillating water column (OWC) wave power device. The nonlinear free-surface condition inside the chamber was specially devised to represent the pneumatic pressure due to airflow velocity and viscous energy loss at the chamber entrance due to wave column motion. The newly developed NWT technique was verified through comparison with given experimental results. The maximum energy extraction was estimated with various chamber-air duct volume ratios.