DOI QR코드

DOI QR Code

Study for Flow Phenomenon in the Circulation Water Pump Chamber using the Flow-3D Model

Flow-3D 모형을 이용한 순환수취수펌프장 내 흐름현상 연구

  • Received : 2019.01.11
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

Indonesia has a very short supply of electricity. As a solution to this problem, plans for construction of thermal power plants are increasing. Thermal power plant require the cooling water system to cool the overheated engine and equipment that accompany power generation, and the circulation water pump chamber among the cooling water system are generally designed according to the ANSI (1998) standard. In this study, the design criterion $20^{\circ}$ for the spreading angle of the ANSI (1998) of the layout of the circulating water pump chamber can not be satisfied on the K-coal thermal power plant site condition in Indonesia. Therefore, 3-D numerical model experiment was carried out to obtain a hydraulically stable flow and stable structure. The Flow-3D model was used as numerical model. In order to examine the applicability of the Flow-3D model, the flow study results around the rectangular structure of Rodi (1997) and the numerical analysis results were compared around the rectangular structures. The longitudinal velocity distribution derived from numerical analysis show good agreement. In order to satisfy the design velocity in the circulating water pump chamber, a rectangular baffle favoring velocity reduction was applied. When the approach velocity into the circulating water pump chamber was occurred 1.5 m/s ~ 2.5 m/s, the angle of the separation flow on the baffle was occurred about $15^{\circ}{\sim}20^{\circ}$. By placing the baffle below the separation flow angle downstream, the design velocity of less than 0.5 m/s was satisfied at inlet bay.

인도네시아는 전력 공급이 매우 부족한 현실에 처해 있으며, 이에 대한 해결책으로 화력발전소 건설 계획이 증가하고 있다. 화력발전소는 발전에 수반되는 엔진과 장비의 과열을 식히기 위해 냉각수 계통을 필요로 하며, 냉각수 계통 중 순환수 취수펌프장(circulating water pump chamber)은 일반적으로 ANSI (1998) 기준에 따라 설계된다. 본 연구에서는 인도네시아 K-석탄화력발전소의 순환수취수펌프장이 현장 여건상 ANSI (1998)의 확산각 설계기준 $20^{\circ}$를 만족시킬 수 없어, 수리적으로 안정된 흐름 및 구조물이 되도록 3차원 수치모형실험을 수행하였다. 수치모형으로 Flow-3D 모형을 이용하였다. Flow-3D 모형의 적용성을 검토하기 위해 Rodi (1997)의 사각형 구조물 주변에 형성되는 흐름 연구 결과와 금회 수치해석 결과를 비교하였다. 수치해석에서 도출된 종방향 유속 분포는 잘 일치함을 보여주고 있다. 순환수취수펌프장 내 설계유속을 만족시키기 위해 유속 저감에 유리한 사각형 형태의 배플을 적용하였다. 순환수취수펌프장으로 유입되는 유속이 1.5 m/s ~ 2.5 m/s로 분포되는 경우, 배플에서 분리흐름의 각도는 약 $15^{\circ}{\sim}20^{\circ}$로 발생하였다. 이를 고려하여 분리흐름 각도 이하로 하류에 배플을 배치함으로 Inlet bay 설계유속 0.5 m/s 이하를 만족시켰다.

Keywords

SHGSCZ_2019_v20n4_580_f0001.png 이미지

Fig. 1. Diffusion angle of CWP chamber boundary [4]

SHGSCZ_2019_v20n4_580_f0002.png 이미지

Fig. 2. CWP chamber

SHGSCZ_2019_v20n4_580_f0003.png 이미지

Fig. 3. The geometry of Cooling tower basin and CWP chamber

SHGSCZ_2019_v20n4_580_f0004.png 이미지

Fig. 5. Examine section for the design velocity (unit :m/s)

SHGSCZ_2019_v20n4_580_f0005.png 이미지

Fig. 6. Examine section for the design velocity (unit : m/s)

SHGSCZ_2019_v20n4_580_f0006.png 이미지

Fig. 7. Examine section for the design velocity (Case 6)

SHGSCZ_2019_v20n4_580_f0007.png 이미지

Fig. 8. Velocity development around column (unit : m/s)

SHGSCZ_2019_v20n4_580_f0008.png 이미지

Fig. 8. Velocity development around column (unit : m/s) (Continued)

SHGSCZ_2019_v20n4_580_f0009.png 이미지

Fig. 9. Water level in Cooling tower basin and CWP chamber

SHGSCZ_2019_v20n4_580_f0010.png 이미지

Fig. 4. 3D model construction

Table 1. Status of diffusion angle of CWP chamber

SHGSCZ_2019_v20n4_580_t0001.png 이미지

Table 2. Numerical analysis cases and input data

SHGSCZ_2019_v20n4_580_t0002.png 이미지

Table 3. Approach velocity for each bay (unit : m/s)

SHGSCZ_2019_v20n4_580_t0003.png 이미지

References

  1. J. P. Tullis, "Modeling in Design of Pumping Pits", Journal of the Hydraulic Division, Vol. 105 (HY9), pp. 1053-1063, 1979. https://doi.org/10.1061/JYCEAJ.0005266
  2. C. E. Sweeney, R. A. Elder, D. Hay, "Pump Sump Design Experience: Summary", Journal of the Hydraulic Division, Vol. 108 (HY3), pp. 361-377, 1982. https://doi.org/10.1061/JYCEAJ.0005835
  3. G. E. Hecker, "Scale Effects in Modeling Vortices", Symposium on Scale Effects in Modeling Hydraulic Structures, International Association for Hydraulic Research, 1984.
  4. ANSI, Pump Intake Design, New Jersey, USA, 1998. Available From: https://webstore.ansi.org/standards/hi/ansihi1998
  5. KEPRI, Design of Structure of the Thermal and Nuclear Power Plant, 1997.
  6. Y. K. Yi, S. h. Cheong, C. W. Kim, "Hydraulic and Numerical Model Experiments of Flows in Circulation Water Pump Chambers", Journal of KWRA, Vol. 38, No. 8, pp. 631-643, 2005. DOI: http://dx.doi.org/10.3741/JKWRA.2005.38.8.631
  7. Daewoo E&C, Benghazi North Combined Cycle Power Plant, Libya - Hydraulic Calculation for C.W System, 2004.
  8. Hyundai E&C, Tripoli West 4$\times$350 MW Power Plant Project - Calculation for Circ. Water Intake Structure, 2014.
  9. Hyundai E&C, Kalselteng 2 CFSPP (2$\times$100 MW), 2018.
  10. Daelim, Pagbilao 420 MW Unit 3 Coal-Fired Power Project - Hydraulic Analysis for Intake and Discharge System, 2015.
  11. Hyundai E&C, Talimarjan Thermal Power Plant Expansion Project, 2014.
  12. Posco E&C, Hassyan 1 Clean Coal Project, 2015.
  13. Hyundai E&C, Mirfa Independent Water and Power Project - Hydraulic Calculation for Cooling Water System, 2015.
  14. Kepco E&C Gangneung Anin Thermal Power Plant Units 1 & 2 (1,040 MW$\times$2), 2016.
  15. Samsung C&T, S-Oil Distillation Recovered Heat Generation Project, 2015.
  16. Korea Western Power, The 2nd PyeongTaek Combined Cycle Power Plant 950 MW$\times$1, 2013.
  17. Y. K. Yi, S. h. Cheong, C. W. Kim, J. G. Kim. "Hydraulic and Numerical Model Experiments of Circulation Water Intake for Boryeong Thermal Power Plant No. 7 and No. 8", Journal of KSCE, Vol. 26, No. 5B, pp. 459-467, 2006.
  18. B. J. Park, H. K. Song, Y. H. Hur, S. W. Kang, Y. G. Park, "Estimation of Hydraulic Status on Intake Structure at Gunsan Combined Cycle Power Plant by Numerical and Physical Model Test", Proceedings of KWRA, pp. 1884-1888, 2009.
  19. Flow Science. Flow-3D User's Manual. Los Alamos, NM, USA, 2016.
  20. W. Rodi, "Comparison of LES and RANS calculations of the flow around bluff bodies", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 69, No. 71, pp. 55-75, 1997. DOI: https://doi.org/10.1016/S0167-6105(97)00147-5