• Title/Summary/Keyword: 3 inch

Search Result 554, Processing Time 0.023 seconds

Ferroelectric ultra high-density data storage based on scanning nonlinear dielectric microscopy

  • Cho, Ya-Suo;Odagawa, Nozomi;Tanaka, Kenkou;Hiranaga, Yoshiomi
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.94-112
    • /
    • 2007
  • Nano-sized inverted domain dots in ferroelectric materials have potential application in ultrahigh-density rewritable data storage systems. Herein, a data storage system is presented based on scanning non-linear dielectric microscopy and a thin film of ferroelectric single-crystal lithium tantalite. Through domain engineering, we succeeded to form an smallest artificial nano-domain single dot of 5.1 nm in diameter and artificial nano-domain dot-array with a memory density of 10.1 Tbit/$inch^2$ and a bit spacing of 8.0 nm, representing the highest memory density for rewritable data storage reported to date. Sub-nanosecond (500psec) domain switching speed also has been achieved. Next, long term retention characteristic of data with inverted domain dots is investigated by conducting heat treatment test. Obtained life time of inverted dot with the radius of 50nm was 16.9 years at $80^{\circ}C$. Finally, actual information storage with low bit error and high memory density was performed. A bit error ratio of less than $1\times10^{-4}$ was achieved at an areal density of 258 Gbit/inch2. Moreover, actual information storage is demonstrated at a density of 1 Tbit/$inch^2$.

  • PDF

Improvement of the Model for Predicting Swing Check Valve Opening (스윙형 역지 밸브 개도 예측 모델 개선)

  • Kim, Yang-seok;Song, Seok-yoon;Kim, Dae-woong;Park, Sung-keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.315-320
    • /
    • 2004
  • Swing check valves are the most common type of check valve in nuclear power plant and need to be operated property to perform their functions and to keep the valve internals stable. However, for a swing check valve disc to remain stable, the opening characteristics should be identified and the upstream flow velocity should be enough to hold the disc fully open and without motion. Thus it is necessary to develop a model for predicting the flow velocity for a given disc opening. In the present study, the disc positions with mean flow velocity were measured for 3 inch and 6 inch swing check valves. Comparison of the measurements with the existing models showed that the models underestimate the mean flow velocity for a given disc position. Therefore, the existing model for predicting swing check valve disc position was improved with the realistic disc impingement area perpendicular to the flow stream and the experimental data. The result showed that the improved model with the best estimate of kb = 0.04 predicts well the disc openings of 6 inch swing check valve, especially in the low velocity region. For better prediction of the disc opening at high flow velocity, however, it is recommended to develop a kb correlation with the disc angle.

  • PDF

Analysis of Variables Effects in 300mm PECVD Chamber Cleaning Process Using NF3

  • Sang-Min Lee;Hee-Chan Lee;Soon-Oh Kwon;Hyo-Jong Song
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.114-122
    • /
    • 2024
  • NF3, Chamber cleaning gas, has a high Global Warming Potential (GWP) of 17,000, causing significant greenhouse effects. Reducing gas usage during the cleaning process is crucial while increasing the cleaning Rate and reducing cleaning standard deviation (Stdev). In a previous study with a 6-inch PECVD chamber, a multiple linear regression analysis showed that Power and Pressure had no significant effect on the cleaning Rate because of their P-values of 0.42 and 0.68. The weight for Flow is 11.55, and the weights for Power and Pressure are 1.4 and 0.7. Due to the limitations of the research equipment, which differed from those used in actual industrial settings, it was challenging to assess the effects in actual industrial environment. Therefore, to show an actual industrial environment, we conducted the cleaning process on a 12-inch PECVD chamber, which is production-level equipment, and quantitatively analyzed the effects of each variable. Power, Pressure, and NF3 Flow all had P-values close to 0, indicating strong statistical significance. The weight for Flow is 15.68, and the weights for Power and Pressure are 4.45 and 5.24, respectively, showing effects 3 and 7 times greater than those with the 6-inch equipment on the cleaning rate. Additionally, we analyzed the cleaning Stdev and derived that there is a trade-off between increasing the cleaning Rate and reducing the cleaning Stdev.

  • PDF

A Study of shear bond strength of bonded retainer according to the bonding method and type of wires (접착방법 및 multistranded wire의 종류에 따른 접착식 보정장치의 전단접착강도에 관한 연구)

  • Lee, Hyoung-Cheol;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.143-153
    • /
    • 2002
  • The bonded orthodontic retainer constructed from composite and multistrand orthodontic wire provides an esthetic and efficient system for maintained retention. This study was designed to measure shear bond strength of bonded retainers and to suggest a optimal combination of a multistrand wire and bonding method used when bonded retainer was fabricated. 160 sound maxillary and mandibular premolars were used for 80 test samples. After Uniformizing bonding area, length of wire, and thickness of composite, multistrand wire was bonded to fabricated a bonded retainer by direct or indirect bonding method. Shear bond strength and extension length of each sample were measured by a universal testing machine. The results of this study were as follows : 1. In vitro shear bond testing found 6-stranded, 0.0155 inch wires to have the largest shear bond strength and 3-stranded, 0.0195 inch wires to have the least shear bond strength. But, These difference was not statistically significant(p<0.05). 2. In vitro extension testing found 3-stranded, 0.0155 inch wires to have the largest extension length and 3-stranded, 0.0195 inch wires to have the least extension length(p<0.05). The larger diameter wire was used, the larger extension length was shown. But, the strand of wire is not related to the extension length of wire. 3. In comparison with direct bonding method, larger shear bond strength and extension length was shown in indirect bonding method(p<0.05).

Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.279-291
    • /
    • 2014
  • Smart flanges are used for pipeline and riser repair in subsea. In a typical case in the gas export pipeline project, the end cap bolts of a 4inch smart flange were broken during operation, and in turn leakage occurred. This work presents the detail of three dimensional finite element analysis of the smart flange to support the observed end cap bolts failure. From finite element analysis it turns out that in the presence of external bending moment, an uneven contact distribution is present between seal and end cap, which in turn changes the uniform load distribution on bolts and threaten the integrity of bolts. On the other hand, 3D finite element analysis of interaction between pipeline and seabed is presented by means of Abaqus to explore the distribution of bending moment along the pipeline route. It is found that lateral buckling occurs in the pipeline which introduces large bending moment.

3.5 inch QCIF AMOLED Panel with Ultra Low Temperature Polycrystalline Silicon Thin Film Transistor on Plastic Substrate

  • Kim, Yong-Hae;Chung, Choong-Heui;Moon, Jae-Hyun;Park, Dong-Jin;Lee, Su-Jae;Kim, Gi-Heon;Song, Yoon-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.717-720
    • /
    • 2007
  • We fabricated the 3.5 inch QCIF AMOLED panel with ultra low temperature polycrystalline silicon TFT on the plastic substrate. To reduce the leakage current, we used the triple layered gate metal structure. To reduce the stress from inorganic dielectric layer, we applied the organic interlayer dielectric and the photoactive insulating layer. By using the interlayer dielectric as a capacitor, the mask steps are reduced up to five.

  • PDF

Silicon-based 0.69-inch AMOEL Microdisplay with Integrated Driver Circuits

  • Na, Young-Sun;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • Silicon-based 0.69-inch AMOEL microdisplay with integrated driver and timing controller circuits for microdisplay applications has been developed using 0.35 ${\mu}m$ l-poly 4-metal standard CMOS process with 5 V CMOS devices and CMP (Chemical Mechanical Polishing) technology. To reduce the large data programming time consumed in a conventional current programming pixel circuit technique and to achieve uniform display, de-amplifying current mirror pixel circuit and the current-mode data driver circuit with threshold roltage compensation are proposed. The proposed current-mode data driver circuit is inherently immune to the ground-bouncing effect. The Monte-Carlo simulation results show that the proposed current-mode data driver circuit has channel-to-channel non-uniformity of less than ${\pm}$0.6 LSB under ${\pm}$70 mV threshold voltage variaions for both NMOS and PMOS transistors, which gives very good display uniformity.

The Investigation compared with Productivity and Properties on American Cotton and Korean Cotton (미국면과 한국면의 생산량 및 특성 비교)

  • Lee, Kwang-Woo
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.275-279
    • /
    • 1999
  • The purpose of this study was to investigate a specific character on products of Korean cotton and American cotton with cultivated in sangju city, Korea. The results of this study were as follows: Productivity of American cotton was nine times higher than those of Korean cotton. Spinning coefficient index (SCI: 140), strength (32.6 g/tex), fiber length (1.12 inch), uniformity index (83.4%), short fiber index (6.4), color grade (21) of American cotton was superior than SCI (122), strength (27.7 g/tex), fiber length (1.02 inch), uniformity index(81.1 %), short fiber index (10.6), color grade (23) of Korean cotton. Microaire (3.5), elongation (6.9%) of Korean cotton was superior than American cotton.

  • PDF

The Effect of Text Information Frame Ratio and Font Size on the Text Readability of Circle Smartwatch

  • Park, Seungtaek;Park, Jaekyu;Choe, Jaeho;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.499-513
    • /
    • 2014
  • Objective: The objective of this study was to examine frame ratio of text information and font size in the circle smartwatch. Background: Recently, electronic manufacturers try to develop the original metaphor of traditional wrist watch (circle) in terms of smartwatch. They endeavor to break the square display in order to improve emotional customer satisfaction. Method: The experiments examined twenty level of text information design, combinations of four frame ratios (1:1, 4:3, 16:9, 21:9) and five font sizes (6pt, 7pt, 8pt, 9pt, 10pt). Nineteen participants volunteered for the experiment. Dependent variables were WPM (Words per Minute), reading preference, design preference and total preference. Furthermore, small circle display was made by using circle display data (1.3inch), which was exhibited in IFA (International Funkausstellung) 2014. Results: As a result, ANOVA (Analysis of Variance) revealed that WPM, and task time preference affect the specific frame ratio and font size. Results of ANOVA for reading preference, design preference, total preference were grouped by post-analysis LSD (Least Significant Difference). Among users, display ratio (16:9, 21:9), and font size (9pt) were preferred. In conclusion, 16:9 display ratio and 9pt are adaptable for text information in 1.3inch circle display. Conclusion: From the study, it is shown that 16:9 display ratio and 9pt size are more adaptable for text information in 1.3inch circle display than others. It is mainly due to the fact that the order of frame ratio and font size may affect the usability of reading long text information in a small circle display. Therefore, when developers design a circle display, the square frame ratio and font size are required to be considered according to circle size. Application: The 16:9 display ratio and 9pt font size may be utilized as a text information frame in the circle display design guideline for smartwatch.

Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading (주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • The failure mode of piping systems due to seismic loads is the low-cycle fatigue failure with ratcheting, and it was found that the element in which nonlinear behavior is concentrated and damage occurs is the elbow. In this study, to quantitatively express the failure criteria for a pipe elbow of SCH40 3-inch carbon steel under low-cycle fatigue, the limit state was defined as leakage, and the in-plane cyclic loading test was conducted. For the carbon steel pipe elbow, which is the vulnerable part to seismic load of piping systems, the damage index was represented using the moment-deformation angle relationship, and it was compared and analyzed with the damage index calculated using the force-displacement relationship. An attempt was made to quantitatively express the limit state of the carbon steel pipe elbow involving leakage using the damage index, which was based on the dissipated energy caused by repeated external forces.