• 제목/요약/키워드: 3 degree of freedom

검색결과 653건 처리시간 0.022초

인체 머리부 6 자유도 운동 측정의 신뢰성 향상을 위한 가속도계 감도축의 옵셋(offset) 추정 (Estimation of Sensitivity Axis Offset of an Accelerometer for Accurate Measurement of the 6 DOF Human Head Motion)

  • 이정훈;김광준;장한기
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.905-912
    • /
    • 2008
  • Notion sickness is well known to be caused by long time exposure to the very low frequency motion in the multiple axes of human body Since the vestibular system for the perception of low frequency motion is located in the head, accurate measurement of 6 degree of freedom head motion is of great importance. In this study, the measurement system consisting of a safety helmet and 9 translational accelerometers was constructed for the estimation of 3 translational and 3 rotational motions of human head. Since estimation errors of 3 rotational components can be significantly magnified even by small offset of the sensitivity axis from the geometric center of an accelerometer, accurate measurement of sensitivity axis must be preceded. The method for accurate estimation of the offset was proposed, and the effect of offset on the estimation of angular acceleration was investigated.

Control of Robot Manipulators Using Time-Delay Estimation and Fuzzy Logic Systems

  • Bae, Hyo-Jeong;Jin, Maolin;Suh, Jinho;Lee, Jun Young;Chang, Pyung-Hun;Ahn, Doo-sung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1271-1279
    • /
    • 2017
  • A highly accurate model-free controller is proposed for trajectory tracking control of robot manipulators. The proposed controller incorporates time-delay estimation (TDE) to estimate and cancel continuous nonlinearities of robot dynamics, and exploits fuzzy logic systems to suppress the effect of the TDE error, which is due to discontinuous nonlinearities such as friction. To this end, integral sliding mode is defined using desired error dynamics, and a Mamdani-type fuzzy inference system is constructed. As a result, the proposed controller achieves the desired error dynamics well. Implementation of the proposed controller is easy because the design of the controller is intuitive and straightforward, and calculations of the complex robot dynamics are not required. The tracking performance of the proposed controller is verified experimentally using a 3-degree of freedom PUMA-type robot manipulator.

Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles

  • Zahrai, Seyed Mehdi;Kakouei, Sirous
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.391-401
    • /
    • 2019
  • Control of vibrations against extraordinary excitations such as wind and earthquake is very important to the protection of life and financial concerns. One of the methods of structural control is to use Tuned Liquid Damper (TLD), however due to the nature of TLD only one sloshing frequency can be created when the water is sloshing. Among various ideas proposed to compensate this problem, by changing the angle of some rotatable baffles embedded inside a TLD, a frequency range is created such that these baffles are tuned manually at different frequencies. In this study, the effect of cross sectional shape of container with rotating baffles on seismic behavior of TLD is experimentally studied. For this purpose, rectangular and cylindrical containers are designed and used to suppress the vibrations of a Single Degree-Of-Freedom (SDOF) structure under harmonic and earthquake excitations considering three baffle angles. The results show that the rectangular-shaped damper reduces the structural response in all load cases more than the damper with a cylindrical shape, such that maximum differences of two dampers to reduce the structural displacement and structural acceleration are 5.5% and 3% respectively, when compared to the cases where no baffles are employed.

Insight into coupled forced vibration method to identify bridge flutter derivatives

  • Xu, Fuyou;Ying, Xuyong;Zhang, Zhe
    • Wind and Structures
    • /
    • 제22권3호
    • /
    • pp.273-290
    • /
    • 2016
  • The flutter derivatives of bridge decks can be efficiently identified using the experimentally and/or numerically coupled forced vibration method. This paper addresses the issue of inherent requirement for adopting different frequencies of three modes in this method. The aerostatic force components and the inertia of force and moment are mathematically proved to exert no influence on identification results if the signal length (t) is integer (n=1,2,3...) times of the least common multiple (T) of three modal periods. It is one important contribution to flutter derivatives identification theory and engineering practice in this study. Therefore, it is unnecessary to worry about the determination accuracy of aerostatic force and inertia of force and moment. The influences of signal length, amplitude, and frequency ratio on flutter derivative are thoroughly investigated using a bridge example. If the signal length t is too short, the extraction results may be completely wrong, and particular attention should be paid to this issue. The signal length t=nT ($n{\geq}5$) is strongly recommended for improving parameter identification accuracy. The proposed viewpoints and conclusions are of great significance for better understanding the essences of flutter derivative identification through coupled forced vibration method.

HELIUM3D: A Laser-scanning Head-tracked Autostereoscopic Display

  • Brar, Rajwinder Singh;Surman, Phil;Sexton, Ian;Hopf, Klaus
    • Journal of Information Display
    • /
    • 제11권3호
    • /
    • pp.100-108
    • /
    • 2010
  • A multi-user autostereoscopic display based on laser scanning is described in this paper. It does not require the wearing of special glasses; it can provide 3D to several viewers who have a large degree of freedom of movement; and it requires the display of only a minimum amount of information. The display operates by providing regions in the viewing field, referred to as "exit pupils," which follow the positions of the viewers' eyes under the control of a multi-user head tracker. The display incorporates an RGB laser illumination source that illuminates a light engine. The light directions are controlled by a spatial light modulator, and a front screen assembly incorporates a novel Gabor superlens. Its operating principle is explained in this paper, as is the construction of three iterations of the display. Finally, a method of developing the display into one that is suitable for television applications is described.

Design of Dynamically Focus-switchable Fresnel Zone Plates Based on Plasmonic Phase-change VO2 Metafilm Absorbers

  • Kyuho Kim;Changhyun Kim;Sun-Je Kim;Byoungho Lee
    • Current Optics and Photonics
    • /
    • 제7권3호
    • /
    • pp.254-262
    • /
    • 2023
  • Novel thermo-optically focus-switchable Fresnel zone plates based on phase-change metafilms are designed and analyzed at a visible wavelength (660 nm). By virtue of the large thermo-optic response of vanadium dioxide (VO2) thin film, a phase-change material, four different plasmonic phase-change absorbers are numerically designed as actively tunable Gires-Tournois Al-VO2 metafilms in two and three dimensions. The designed phase-change metafilm unit cells are used as the building blocks of actively focus-switchable Fresnel zone plates with strong focus switching contrast (40%, 83%) and high numerical apertures (1.52, 1.70). The Fresnel zone plates designed in two and three dimensions work as cylindrical and spherical lenses in reflection type, respectively. The coupling between the thermo-optic effect of VO2 and localized plasmonic resonances in the Al nanostructures offer a large degree of freedom in design and high-contrast focus-switching performance based on largely tunable absorption resonances. The proposed method may have great potential in photothermal and electrothermal active optical devices for nonlinear optics, microscopy, 3D scanning, optical trapping, and holographic displays over a wide spectral range including the visible and infrared regimes.

수직이착륙 무인항공기 자동 착륙을 위한 영상기반 항법 (Vision-based Navigation for VTOL Unmanned Aerial Vehicle Landing)

  • 이상훈;송진모;배종수
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.226-233
    • /
    • 2015
  • Pose estimation is an important operation for many vision tasks. This paper presents a method of estimating the camera pose, using a known landmark for the purpose of autonomous vertical takeoff and landing(VTOL) unmanned aerial vehicle(UAV) landing. The proposed method uses a distinctive methodology to solve the pose estimation problem. We propose to combine extrinsic parameters from known and unknown 3-D(three-dimensional) feature points, and inertial estimation of camera 6-DOF(Degree Of Freedom) into one linear inhomogeneous equation. This allows us to use singular value decomposition(SVD) to neatly solve the given optimization problem. We present experimental results that demonstrate the ability of the proposed method to estimate camera 6DOF with the ease of implementation.

굴곡형 케이블-막 지붕 시스템의 비선형 해석 (Nonlinear Analysis of Curved Cable-Membrane Roof Systems)

  • 박강근;권익노;이동우
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

평면형 3자유도 병렬 메커니즘의 여유 구동 특성 분석 (Analysis of the Redundant Actuation Characteristics of the Planar 3-DOF Parallel Mechanism)

  • 전정인;오현석;우상훈;김성목;김민건;김희국
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.194-205
    • /
    • 2017
  • A redundantly actuated planar 3-degree-of-freedom parallel mechanism is analyzed to show its high application potential as a haptic device. Its structure along with the closed form forward position solutions is briefly discussed. Then its geometric and kinematic characteristics via singularity analysis, the kinematic isotropy index, and the input-output force transmission ratio are investigated both for the redundantly actuated cases and for the non-redundantly actuated case. In addition, comparative joint torque simulations of the mechanism with different number of redundant actuations as well as without redundant actuation are conducted to confirm the improved joint torque distribution characteristics. Through these analyses it is shown that the geometric and kinematic characteristics of the redundantly actuated mechanism are superior to the ones of the mechanism without redundant actuation. Thus, it can be concluded that the suggested planar mechanism with redundant actuation has a very high potential for haptic device applications.

세이핑에 의한 렌티큘러 렌즈 금형 가공에 관한 연구 (A Study on Lenticular Lens Mold Fabrication by Shaping)

  • 제태진;이응숙;심용식;김응주;나경환;최두선
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.245-250
    • /
    • 2005
  • Recently, micro machining technology for high precision mold becomes more interested for mass production of high performance optical parts micro-grooved on the surface, which is under very active development due to its effectiveness in the view point of optical performance. Mechanical micro machining technology now has more competitiveness on lithography, MEMS or LIGA processes which have some problems to fabricate especially cylinder type of groove in such as lenticular lens for illumination angle modulation system. In this study. a lenticular lens mold with U-type micro groove is fabricated making utilizing of the benefit of the mechanical micro machining technology. A shaping machining process is adapted using 3 axis degree of freedom micro machining system and single crystal natural diamond tool. A brass and a electroless nickel materials are used for mold fabrication. Machining force, chip shape and machined surface are investigated from the experiment and an optimal machining condition is found based on the examined problems from the micro cutting process.