• Title/Summary/Keyword: 3 degree of freedom

Search Result 661, Processing Time 0.025 seconds

Kinematic Analysis of Fault-Tolerant 3 Degree-of-Feedom Spherical Modules (고장에 강인한 구형 3자유도 모듈에 관한 기구학적 해석)

  • 이병주;김희국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2846-2859
    • /
    • 1994
  • This work deals with kinematic analysis of fault-tolerant 3 degree-of-freedom spherical modules which have force redundancies in its parallel structure. The performance of a redundantly actuated four-legged module with no actuator failure, a single actuator failure, partial and half failure of dual actuator are compared to that of a three-legged module, in terms of maximum force transmission ratio, isotropic characteristics, and fault-tolerant capability. Additionally, a system with an excess number of small floating actuators is considered, and the contribution of these small actuators to the force transmission and fault-tolerant capability is evaluated. This study illustrates that the redundant actuation mode allows significant saving of input actuation effort, and also delivers a fault tolerance.

Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system

  • Febbo, M.;Bambill, D.V.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.637-654
    • /
    • 2011
  • The present paper studies the variation of the natural frequencies and mode shapes of rectangular plates carrying a three degree-of-freedom spring-mass system (subsystem), when the subsystem changes (stiffness, mass, moment of inertia, location). An analytical approach based on Lagrange multipliers as well as a finite element formulation are employed and compared. Numerically reliable results are presented for the first time, illustrating the convenience of using the present analytical method which requires only the solution of a linear eigenvalue problem. Results obtained through the variation of the mass, stiffness and moment of inertia of the 3-DOF system can be understood under the effective mass concept or Rayleigh's statement. The analysis of frequency values of the whole system, when the 3-DOF system approaches or moves away from the center, shows that the variations depend on each particular mode of vibration. When the 3-DOF system is placed in the center of the plate, "new" modes are found to be a combination of the subsystem's modes (two rotations, traslation) and the bare plate's modes that possess the same symmetry. This situation no longer exists as the 3-DOF system moves away from the center of the plate, since different bare plate's modes enable distinct motions of the 3-DOF system contributing differently to the "new' modes as its location is modified. Also the natural frequencies of the compound system are nearly uncoupled have been calculated by means of a first order eigenvalue perturbation analysis.

Kinematic and dynamic analysis of a spherical three degree of freedom joint rehabilitation exercise equipment (3자유도 구형관절 재활운동기기의 기구학 및 동역학 해석)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.16-29
    • /
    • 2009
  • This paper investigates the kinematic and dynamic analysis of a spherical three degree of freedom parallel joint module, which is used in the exercise equipment for balance and leg-strength improvement of aged people. The joint module has three dyads which consist of two links and three revolute joints, and their all joints intersect at the global point located at the module's center. The paper shows the explicit mathematical procedure for deriving the closed form solutions in the inverse and forward position analysis of this parallel joint module. In velocity and acceleration analysis, we derived relations for joint velocities and accelerations of dyads and rotational velocity and acceleration of the top plate. For applying this module to rehabilitation exercise, we determined the dynamic model of the Korean males in their 50s and examined the model's results by dynamic model simulation.

Complications after Senning Operation for TGA with and Wothout VSD (대혈관전위증에서 Senning수술후 합병증에 관한 임상적 고찰)

  • 안재호
    • Journal of Chest Surgery
    • /
    • v.26 no.8
    • /
    • pp.595-603
    • /
    • 1993
  • We analysed 60 consecutive patients who got Senning operation for transposition of the great arteries [TGA] with or without ventricular septal defects [VSD]. There were 41 simple TGA [group I] and 19 TGA with VSD [Group II], the operative mortality was 20 % [in group I 4.9 %, group II 52.6 %]. Among the survivors [n=48], the mean follow-up period was 7 years [range, 1 year to 13.5 years] and the actuarial survival rate at 13 years were 95 % in group I and 42 % in group II. Preoperative high left ventricular pressure and high pulmonary arterial pressure affected the surviving [p<0.01]. There occurred various type of arrhythmia like junctional rhythm, first degree atrioventricular [AV] block, sick sinus syndrome and complete AV block, and we inserted 2 permanent pacemakers for these patients. The incidence of arrhythmia were 28.2 % [11/39] in group I and 55.6 % [5/9] in group II, and the actuarial freedom from arrhythmia at 13 years after operation was 66 % [71 % in group I, 44 % in group II]. Increased aortic cross clamping time had affected the development of arrhythmia [p<0.05] which meant the complexity of the operation. The total incidence of left ventricular outflow tract obstruction [LVOTO] was 31.3 % [15/48], but only 3 patients [6.25 %] showed the significant gradient requiring reoperation. The pulmonary venous pathway obstruction [PVO] were found in 3 patients, all in group I, and among them only one required the reoperation. The estimated freedom from PVO was 89 % at 13 years [87 % in group I, 100 % in group II], but we couldn`t find any significant systemic venous obstruction in our series. There occurred 27.1 % [13/48] mild degree tricuspid valve regurgitation without necessary surgical correction. We experienced 14.6 % [7/48] reoperation rate: 3 residual VSD, 3 LVOTO, 1 PVO, 3 atrial baffle leakage. For this high incidence of complication rate after Senning operation and high mortality in TGA with VSD, We do not use this kind of surgical modality any more and do the Jatene operation for all the TGA patients since several years ago.

  • PDF

A Study on the Comparison of Triangular and Quadrilateral Elements for the Analysis of 3 Dimensional Plate Structures (3차원 판구조물 해석을 위한 삼각형요소와 사각형 요소의 비교에 관한 연구)

  • 왕지석;김유해;이우수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.344-352
    • /
    • 2002
  • In the analysis of the 3 dimensional plate structures by the finite element method, the triangular elements are generally used for the global stiffness matrix of the analyzed system. But the triangular elements of the plates have some problems in the process of formulation and in the precision of analysis. The formulation of the finite element method to analyze 3 dimensional plate structures using quadrilateral elements is presented in this paper. The degree of freedom off nodal point is 6, that is, the displacements in the direction off-y-z is and the rotations about x-y-z axis and then the degree of freedom off element is 24. For the comparison of the analysis using triangular elements and quadrilateral elements, the rectangular plates subjected to the uniform load and a concentrated load on the centroid of the plate, for which the theoretical solutions have been obtained, are analyzed. The calculated deflections of the rectangular plates using the finite element method by the triangular elements and the quadrilateral elements are also compared with the deflections of the plates calculated by theoretical solutions. The defections of the rectangular plates calculated by the finite element method using the quadrilateral elements are closer to the theoretical solutions than the defections calculated by the finite element method using the triangular elements. The deflection of the centroid of plate, calculated by the finite element method, converges to that of theoretical solution as the number of elements is increased. This convergence is much more rapid for the case of using the quakrilateral elements than fir the case of using triangular elements.

3D FEM analysis of earthquake induced pounding responses between asymmetric buildings

  • Bi, Kaiming;Hao, Hong;Sun, Zhiguo
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.377-386
    • /
    • 2017
  • Earthquake-induced pounding damages to building structures were repeatedly observed in many previous major earthquakes. Extensive researches have been carried out in this field. Previous studies mainly focused on the regular shaped buildings and each building was normally simplified as a single-degree-of-freedom (SDOF) system or a multi-degree-of-freedom (MDOF) system by assuming the masses of the building lumped at the floor levels. The researches on the pounding responses between irregular asymmetric buildings are rare. For the asymmetric buildings subjected to earthquake loading, torsional vibration modes of the structures are excited, which in turn may significantly change the structural responses. Moreover, contact element was normally used to consider the pounding phenomenon in previous studies, which may result in inaccurate estimations of the structural responses since this method is based on the point-to-point pounding assumption with the predetermined pounding locations. In reality, poundings may take place between any locations. In other words, the pounding locations cannot be predefined. To more realistically consider the arbitrary poundings between asymmetric structures, detailed three-dimensional (3D) finite element models (FEM) and arbitrary pounding algorithm are necessary. This paper carries out numerical simulations on the pounding responses between a symmetric rectangular-shaped building and an asymmetric L-shaped building by using the explicit finite element code LS-DYNA. The detailed 3D FEMs are developed and arbitrary 3D pounding locations between these two buildings under bi-directional earthquake ground motions are investigated. Special attention is paid to the relative locations of two adjacent buildings. The influences of the left-and-right, fore-and-aft relative locations and separation gap between the two buildings on the pounding responses are systematically investigated.

A Study on Projection Conversion for Efficient 3DoF+ 360-Degree Video Streaming

  • Jeong, Jong-Beom;Lee, Soonbin;Jang, Dongmin;Kim, Sungbin;Lee, Sangsoon;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.24 no.7
    • /
    • pp.1209-1220
    • /
    • 2019
  • The demand for virtual reality (VR) is rapidly increasing. Providing the immersive experience requires much operation and many data to transmit. For example, a 360-degree video (360 video) with at least 4K resolution is needed to offer an immersive experience to users. Moreover, the MPEG-I group defined three degrees of freedom plus (3DoF+), and it requires the transmission of multiview 360 videos simultaneoulsy. This could be a burden for the VR streaming system. Accordingly, in this work, a bitrate-saving method using projection conversion is introduced, along with experimental results for streaming 3DoF+ 360 video. The results show that projection conversion of 360 video with 360lib shows a Bjontegaard delta bitrate gain of as much as 11.4%.

Dynamic response of a bridge deck with one torsional degree of freedom under turbulent wind

  • Foti, Dora;Monaco, Pietro
    • Wind and Structures
    • /
    • v.3 no.2
    • /
    • pp.117-132
    • /
    • 2000
  • Under special conditions of turbulent wind, suspension and cable-stayed bridges could reach instability conditions. In various instances the bridge deck, as like a bluff body, could exhibit single-degree torsional instability. In the present study the turbulent component of flow has been considered as a solution of a differential stochastic linear equation. The input process is represented by a Gaussian zero-mean white noise. In this paper the analytical solution of the dynamic response of the bridge has been determined. The solution has been obtained with a technique of closing on the order of the moments.

Effects of Foundation Motions on Dynamic Behaviors of a Bridge under Seismic Excitations (교량거동에 미치는 기초의 회전 및 병진운동의 영향)

  • 김상효;마호성;함형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.216-222
    • /
    • 1998
  • Effects of translational and rotational motions of the foundation on the dynamic behaviors of a bridge under seismic excitations are examined by utilizing a simplified 3 degree-of-freedom of system. To consider the nonlinear characteristics of the RC pier, a hysteresis model is adapted, which can simulate the inelastic motion of the pier with the stiffness degradation. From results, the portion of the total displacement due to rotational motion of the foundation becomes larger as applied seismic excitation increases.

  • PDF

Analysis of detection of mass position using the change of the structural dynamic characteristics (동특성 변화로부터 구조물의 변경질량 위치 해석)

  • 이정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.209-213
    • /
    • 2002
  • This study proposed the analysis of mass position detection due to the change of the mass and stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the mass. The predicted detection of mass positions and magnitudes are in good agreement with these from the structural reanalysis using the modified mass.

  • PDF