• Title/Summary/Keyword: 3 compartment model

Search Result 146, Processing Time 0.021 seconds

Modelling of a Biomolecular Processing for the Production and Secretion of Monoclounal Antibody (단일콜론항체 생산 및 분비에 대한 생물분자공정의 모델링)

  • 박재성;박선호
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.369-377
    • /
    • 1998
  • To analyze the unique aspects of biomolecular processing for monoclonal antibody (MAb) production and secretion, the simple working model based on 3-compartment (endoplasmic reticulum, Golgi apparatus, and extracellular medium) was developed. Based on in vitro MAb assembly experimental results, the kinetic model for MAb assembly in the endoplasmic reticulumn was proposed. The dynamics of MAb assembly and secretion was simulated using methematica program. According to the simulation results, the proposed 3-compartment model provides an efficient means to predict the specific MAb productivity as well as intracompartmental concentrations of MAb in endoplasmic reticulum, Golgi apparatus, and extracellular compartment model. In vivo profiles of MAb intermediates gave good agreements with the simulation profiles predicted by the intracellular compartment model. Furthermore, results of such analysis can help in directing the control strategy for optimum biomolecular processing in a mammalian cell culture system.

  • PDF

Estimation of Tritium Concentration in Groundwater around the Nuclear Power Plants Using a Dynamic Compartment Model

  • Choi, Heui-Joo;Lee, Han-Soo;Kang, Hee-Suk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.239-245
    • /
    • 2003
  • Every nuclear power plant measured concentrations of tritium in groundwater and surface water around the plants periodically. It was not easy to predict the tritium concentration only with these measurement data in case of various release scenarios. KAERI developed a new approach to find the relationship between the tritium release rate and tritium concentration in the environment. The approach was based upon a dynamic compartment model. In this paper the dynamic compartment model was modified to predict the tritium behavior more accurately. The mechanisms considered for the transfer of tritium between the compartments were evaporation, groundwater flow, infiltration, runoff, and hydrodynamic dispersion. Time dependent source terms of the compartment model were introduced to refine the release scenarios. Also, transfer coefficients between the compartments were obtained using realistic geographical data. In order to illustrate the model various release scenarios were developed, and the change of tritium concentration in groundwater and surface water around the nuclear power plants was estimated.

On a Compartment Layout Computer Model and Associated Data Structure (선박 구획배치 전산모델과 그 자료구조에 관한 연구)

  • Yong-Chul,Kim;Kyu-Yeul,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.117-126
    • /
    • 1990
  • In the early stage of ship design process large number of alternative compartment layout designs are generated and examined iteratively. Therefore, the design efficiency will be considerably enhanced if a tool is available to perform this kind of iterative design process effectively in a relatively short time. This paper describes a method for generating and evaluating various alternative compartment layout designs in a personal computer. In this method, computer model of a compartment layout is generated by establishing the hierarchical structure of the entities forming a compartment and defining clearly the relationships among the entities. The evaluation of the design alternatives are effectively performed utilizing the computer model generated. The data structure for storing the defined compartment layout is explained and an illustrative example is given showing the application of the method to the design and evaluation of compartment layout of an Oceanographic Research Vessel.

  • PDF

Clinical Pharmacokinetics of Vancomycin in Ovarian Cancer Patients (난소암 환자에서 반코마이신의 임상약물동태)

  • Kim, Yang Woo;Choi, Jun Shik;Lee, Jin Hwan;Park, Jae Young;Choi, Byong Chul;Burm, Jin Pil
    • Korean Journal of Clinical Pharmacy
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • The purpose of this study was to determine pharmacokinetic parameters of vancomycin using the compartment model dependent and compartment model independent analysis in 6 Korean normal volunteers and 8 ovarian cancer patients. Vancomycin was administered 1.0 g bolus by IV infusion over 60 minutes. The elimination rate constant ($\beta$), volume of distribution (Vd), total body clearance (CLt), and area under the plasma level-time curve (AUC) of vancomycin in normal volunteers using the compartment model dependent analysis were $0.150\pm0.030\;hr^{-1},\;32.9\pm2.81\;L/kg,\;5.36\pm0.63\;L/hr,\;and\;186.5\pm20.5\;{\mu}g/ml{\cdot}hr$, respectively. The $\beta$, Vd, CLt, and AUC of vancomycin in ovarian cancer patients using the compartment model dependent analysis were $0.109\;0.008\;hr^{-1},\;41.5\pm3.01\;L/kg,\;4.58\pm0.57\;L/hr\;and\;218.3\pm22.9\;{\mu}g/ml{\cdot}hr$, respectively. There were significant differences (p<0.05,\;p<0.01) in $\beta$, Vd, CLt, and AUC between normal volunteers and ovarian cancer patients. The elimination rate constant (Kel), CLt, and AUC of vancomycin in normal volunteers using the compartment model independent analysis were $0.152\pm0.022\;hr^{-1},\;5.77\pm0.75\;L/hr,\;and\;173.2\pm22.5;{\mu}g/ml{\cdot}hr$, respectively. The Kel, CLt, and AUC of vancomycin in ovarian cancer patients using the compartment model independent analysis were $0.126\pm0.012\;hr^{-1},\;4.96\pm0.55\;L/hr,\;and\;201.7\pm25.6;{\mu}g/ml{\cdot}hr$, respectively. There were significant differences (p<0.05, p<0.01) in Kel, CLt, and AUC between normal volunteers and ovarian cancer patients. And also, there was significant difference (p<0.05) in Kel of vancomycin in ovarian cancer patients between the compartment model dependent and independen analysis. It is necessary for effective dosage regimen of vancomycin in ovarian cancer patient to use these population parameters.

  • PDF

A Study on Analysis of Atmospheric Behavior of PCBs by an One-compartment Box Model (단일 구획상자모델을 이용한 PCBs의 대기 중 거동 해석에 관한 연구)

  • Kim, Kyoung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.713-720
    • /
    • 2006
  • To analyze atmospheric fate of PCBs in the Kanto region, Japan, an one-compartment box model was used and the relationship between behavior of each PCB homologue and air temperature was simulated. In addition, the emission rates and the deposition fluxes in the overall Kanto region were estimated by the model. The total emission rate and deposition flux was 3,320 kg/yr and 1,480 kg/yr, respectively. The contribution of advection was ranged from 22 to 38% among elimination processes(advection, dry & wet deposition and degradation) of PCBs from atmosphere. The rates of degradation(OH radical process) for PCBs in the Kanto region would be negligible. This study showed that one-compartment box model can be available to understand the overall atmospheric behavior of PCBs.

PIV Measurements of Ventilation Flow inside a Passenger Compartment (PIV를 이용한 실차 내부 환기유동의 정량적 속도장 측정)

  • Lee, Jin-Pyung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.24-29
    • /
    • 2011
  • The improvement of climatic comfort is crucial not only for passenger comfort but also for driving safety. Therefore, a better understanding on the flow characteristics of ventilation flow inside the passenger compartment is essential. Most of the previous studies investigated the ventilation flow using Computational Fluid Dynamics (CFD) calculations or scale-down water-model experiments. In this study, the ventilation flow inside the passenger compartment of a real commercial automobile was investigated using a Particle Image Velocimetry (PIV) velocity field measurement technique. Under real operating conditions, the velocity fields were measured at several vertical planes for several ventilation modes. The experimental data obtained from this study can be used to understand the detailed flow characteristics in the passenger compartment of a real car and to validate numerical predictions.

3-D Numerical Simulation of Flows Inside a Passenger Compartment of a Model Vehicle foer Hearting, Air-Conditioning and Defrosting Modes (승용차 탑승부내의 난방, 냉방 및 성애제거 모드에 대한 3차원 유동해석)

  • 허남건;조원국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1993
  • Flows inside a passenger compartment of a 1/5 scale model vehicle have been simulated by using a general purpose FVM code, TURBO-3D. Three HVAC modes of heating, air-conditioning, and defrosting are simulated by defining three different inlets. Comparisons are made with the published experimental and computational results, giving a good agreement. A method of predicting the defrosting contours on the wind shield is also proposed in the present study, which enables design modifications in design stages.

  • PDF

Experimental Study on the Effect of a Metal Storage Cask and Openings on Flame Temperature in a Compartment Fire

  • Bang, Kyoung-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.395-405
    • /
    • 2020
  • Compartment fire tests were performed using kerosene and Jet A-1 as fire sources to evaluate the relationship between flame temperature and opening size. The tests were performed for a fire caused by the release of kerosene owing to vehicle impact, and for a fire caused by the release of Jet-A-1 owing to airplane collision. The compartment fire tests were performed using a 1/3-scale model of a metal storage cask when the flame temperature was deemed to be the highest. We found the combustion time of Jet-A-1 to be shorter than that of kerosene, and consequently, the flame temperature of Jet-A-1 was measured to be higher than that of kerosene. When the opening was installed on the compartment roof, even though the area of the opening was small, the ventilation factor was large, resulting in a high flame temperature and long combustion. Therefore, the position of the opening is a crucial factor that affects the flame temperature. When the metal storage cask was stored in the compartment, the flame temperature decreased proportionally with the energy that the metal storage cask received from the flame.

Development of Target-Controlled Infusion System in Plasma Concentration. PART1 : Establishment of Pharmacokinetic Model and Verification (혈중 목표 농도 자동 조절기(TCI) 개발 PART1 : 약동학적 모델의 수립과 검증)

  • 안재목;길호영
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.341-349
    • /
    • 2002
  • The target controlled infusion(TCI) pump system is a logical approach to the development of improved administration techniques of an intravenous anaesthetic agent. The principle of TCI system is based on an understanding of the pharmacokinetic properties, three or four compartment model. The TCI system is optimal and flexible control of the plasma drug concentration. But the clinical goal is always to achieve a therapeutic drug effect, not a therapeutic concentration. So we developed the algorithm to target the concentration at the site of drug effect rather than the concentration in the plasma. If impulse drug is inputted into body, the decline of plasma concentration with time is shown, resulting in the expression of the differential equation. Therefore, we must reformulate our three-compartment model as four-compartment model with the effect compartment. And we tested plasma targeting and effect targeting algorithm by computer simulation using four-compartment model. So we developed the TCI capable of applying all intravenous drugs by adjusting individual pharmacokinetic parameters independently.

Assessment of Thyroid Dose Evaluation Method by Monitoring of I-131 Concentration in Air (공기중 I-131 농도 감시에 의한 갑상선 피폭 평가법의 적용성)

  • Lee, Jong-Il;Seo, Kyung-Won
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.69-80
    • /
    • 1994
  • The TCMI(Three-Compartment Model for iodine) computer code has been developed, which is based on the three-compartment model and the respiratory model recommended in ICRP publication 54. This code is able to evaluate the thyroid burden, dose equivalent, committed dose equivalent and urinary excretion rate as time-dependent functions from the input data: working time and the radioiodine concentration in air. Using the TCMI code, the time-dependent thyroid burdens, the thyroid doses and the urinary excretion rates were calculated for three specific exposure patterns : acute, chronic and periodic. Applicability as an internal dose evaluation method has been assessed by comparing the results with some operational experiences. Simple equations and tables are provided to be used in the evaluation of the thyroid burden and the resulting doses for given I-131 concentration in air and the working time.

  • PDF