• Title/Summary/Keyword: 3 Graphics

Search Result 1,358, Processing Time 0.032 seconds

A design of The Embedded 3n Graphics Rendering Processor for Portable Devices (휴대형기기에 적합한 내장형 3차원 그래픽 렌더링 처리기 설계)

  • 우현재;장태홍;이문기
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.105-113
    • /
    • 2004
  • This paper proposes 3D graphics accelerator, especially rendering unit, for portable devices. The existing 3D architecture is not suitable for portable devices because of its huge size. To reduce the size, we use iterative architecture and fixed-point calculation. In this paper, we suggest the format of fixed-point comparing with the result images, and some special technique to control. Finally, it is implemented with FPGA and 0.25um ASIC technology respectively. The ASIC chip can execute 47.88M pixels per second. The size of ASIC chip is 4.9287mm*4.9847mm and the power consumption is 263.7mW with 50MHz operation frequency.

Design of a Floating Point Unit for 3D Graphics Geometry Engine (3D 그래픽 Geometry Engine을 위한 부동소수점 연산기의 설계)

  • Kim, Myeong Hwm;Oh, Min Seok;Lee, Kwang Yeob;Kim, Won Jong;Cho, Han Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.10 s.340
    • /
    • pp.55-64
    • /
    • 2005
  • In this paper, we designed floating point units to accelate real-time 3D Graphics for Geometry processing. Designed floating point units support IEEE-754 single precision format and we confirmed 100 MHz performance of floating point add/mul unit, 120 MHz performance of floating point NR inverse division unit, 200 MHz performance of floating point power unit, 120 MHz performance of floating point inverse square root unit at Xilinx-vertex2. Also, using floating point units, designed Geometry processor and confirmed 3D Graphics data processing.

Design of a Truncated Floating-Point Multiplier for Graphic Accelerator of Mobile Devices (모바일 그래픽 가속기용 부동소수점 절사 승산기 설계)

  • Cho, Young-Sung;Lee, Yong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.563-569
    • /
    • 2007
  • As the mobile communication and the semiconductor technology is improved continuously, mobile contents such as the multimedia service and the 2D/3D graphics which require high level graphics are serviced recently. Mobile chips should consume small die area and low power. In this paper, we design a truncated floating-point multiplier that is useful for the 2D/3D vector graphics in mobile devices. The truncated multiplier is based on the radix-4 Booth's encoding algorithm and a truncation algorithm is used to achieve small area and low power. The average percent error of the multiplier is as small as 0.00003% and neglectable for mobile applications. The synthesis result using 0.35um CMOS cell library shows that the number of gates for the truncated multiplier is only 33.8 percent of the conventional radix-4 Booth's multiplier.

A Low-Power Texture Mapping Technique for Mobile 3D Graphics (모바일 3D 그래픽스를 위한 저전력 텍스쳐 맵핑 기법)

  • Kim, Hyun-Hee;Kim, Ji-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.45-57
    • /
    • 2009
  • ETexture mapping is a technique used for adding reality to an image in 3D graphics. However. this technique becomes the bottleneck of the 3D graphics pipeline because it requires large processing power and high memory bandwidth. For reducing memory latency in texture mapping, texture cache is used. As portable devices become smaller and they have power constraint, it is important to reduce the area and the power consumption of the texture cache. In this paper we propose using a small texture cache to reduce the area and the power consumption of the texture cache. Furthermore, we propose techniques to keep a performance comparable to large texture caches by using prefetch techniques and a victim cache. Simulation results show the proposed small texture cache can reduce the area and the power consumption up to 70% and 60%, respectively, by using $1{\sim}2K$ bytes texture cache compared to the conventional 16K bytes cache while keeping the performance.

Analysis on Memory Characteristics of Graphics Processing Units for Designing Memory System of General-Purpose Computing on Graphics Processing Units (범용 그래픽 처리 장치의 메모리 설계를 위한 그래픽 처리 장치의 메모리 특성 분석)

  • Choi, Hongjun;Kim, Cheolhong
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • Even though the performance of microprocessor is improved continuously, the performance improvement of computing system becomes hard to increase, in order to some drawbacks including increased power consumption. To solve the problem, general-purpose computing on graphics processing units(GPGPUs), which execute general-purpose applications by using specialized parallel-processing device representing graphics processing units(GPUs), have been focused. However, the characteristics of applications related with graphics is substantially different from the characteristics of general-purpose applications. Therefore, GPUs cannot exploit the outstanding computational resources sufficiently due to various constraints, when they execute general-purpose applications. When designing GPUs for GPGPU, memory system is important to effectively exploit the GPUs since typically general-purpose applications requires more memory accesses than graphics applications. Especially, external memory access requiring long latency impose a big overhead on the performance of GPUs. Therefore, the GPU performance must be improved if hierarchical memory architecture which can reduce the number of external memory access is applied. For this reason, we will investigate the analysis of GPU performance according to hierarchical cache architectures in executing various benchmarks.

An Efficient Technique for Processing of Spatial Data Using GPU (GPU를 사용한 효율적인 공간 데이터 처리)

  • Lee, Jae-Il;Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.371-379
    • /
    • 2009
  • Recently, GPU (Graphics Processing Unit) has been improved rapidly on the need of speed for gaming. As a result, GPU contains multiple ALU (Arithmetic Logic Unit) for parallel processing of a lot of graphics data, such as transform, ray tracing, etc. Therefore, this paper proposed a technique for parallel processing of spatial data using GPU. Spatial data consists of multiple coordinates, and each coordinate contains value of x and y axis. To display spatial data graphics operations have to be processed to large amount of coordinates. Because the graphics operation is identical and coordinates are multiple data, SIMD (Single Instruction Multiple Data) parallel processing of GPU can be used for processing of spatial data to improve performance. This paper implemented SIMD parallel processing of spatial data using two kinds of SDK (Software Development Kit). CUDA and ATI Stream are used for NVIDIA and ATI GPU respectively. Experiments that measure time of calculation for graphics operations are carried out to observe enhancement of performance. Experimental result is reported that proposed method can enhance performance up to 1,162% for graphics operations. The proposed method that uses parallel processing with GPU for spatial data can be generally used to enhance performance for applications which deal with large amount of spatial data.

  • PDF

Accelerating OpenVG and SVG Tiny with Multimedia Processors (멀티미디어 프로세서를 이용한 OpenVG 및 SVG Tiny의 가속)

  • Lee, Hwan-Yong;Baek, Nak-Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.37-43
    • /
    • 2011
  • OpenVG and SVG Tiny are the most widely used 2D vector graphics technologies for outputs in the various embedded environments including smart phones. Especially, to show high refresh rates on the high resolution screens, it is necessary to effectively accelerate them. Until now, OpenVG and SVG Tiny are available as hardware implementations such as the fully-dedicated graphics chips or full software implementations. Currently available vector graphics silicon chips are relatively expensive and require high power consumption. In contrast, previous full software implementations show lower performance even with almost 100% CPU usages, which would disrupt other multi-threaded applications, In this paper, we present a cost-effective way of accelerating both of OpenVG and SVG Tiny, based on the multimedia-processing hardware, which is wide-spread on the media devices and mobile phones. Through the effective use of these multimedia processors, we successfully accelerated OpenVG and SVG Tiny at least 3.5 times to at most 30 times, even with lower power consumption and lower CPU usage.

High-Quality Global Illumination Production Using Programmable Graphics Hardware (프로그래밍 가능한 그래픽스 하드웨어를 사용한 고품질 전역 조영 생성)

  • Cha, Deuk-Hyun;Chang, Byung-Joon;Ihm, In-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.414-419
    • /
    • 2008
  • 3D rendering is a critical process for a movie production, advertisement, interior simulation, medical and many other fields. Recently, several effective rendering methods have been developed for the photo-realistic image generation. With a rapid performance enhancement of graphics hardware, physically based 3D rendering algorithm can now often be approximated in real-time games. However, the high quality of global illumination, required for the image generation in the 3D animation production community is a still very expensive process. In this paper, we propose a new rendering method to create photo-realistic global illumination effect efficiently by harnessing the high power of the recent GPUs. Final gathering routines in our global illumination module are accelerated by programmable graphics hardware. We also simulate physically based light transport on a ray tracing based rendering algorithm with photon mapping effectively.

  • PDF

Implementation of a 3D Graphics Hardwired T&L Accelerator based on a SoC Platform for a Mobile System (SoC 플랫폼 기반 모바일용 3차원 그래픽 Hardwired T&L Accelerator 구현)

  • Lee, Kwang-Yeob;Koo, Yong-Seo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.59-70
    • /
    • 2007
  • In this paper, we proposed an effective T&L(Transform & Lighting) Processor architecture for a real time 3D graphics acceleration SoC(System on a Chip) in a mobile system. We designed Floating point arithmetic IPs for a T&L processor. And we verified IPs using a SoC Platform. Designed T&L Processor consists of 24 bit floating point data format and 16 bit fixed point data format, and supports the pipeline keeping the balance between Transform process and Lighting process using a parallel computation of 3D graphics. The delay of pipeline processing only Transform operation is almost same as the delay processing both Transform operation and Lighting operation. Designed T&L Processor is implemented and verified using a SoC Platform. The T&L Processor operates at 80MHz frequency in Xilinx-Virtex4 FPGA. The processing speed is measured at the rate of 20M Vertexes/sec.

Power Operation Accelerator to speed up lighting in 3D graphics

  • Young-Su Kwon;In-
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1129-1132
    • /
    • 1998
  • This paper presents a design of special hardware developed for enhancing the floating-point power operations which are actively used at the lighting stage to calculate the specular term in 3D graphics geometry engines. The power operation takes just 4 cycles in our floating-point multiplier while it takes about 100-200 cycles in conventional floating-point units. Although an approximation algorithm is employed in the power operation to reduce the hardware complexity required, the error of power value from the developed floatingpoint multiplier is so minimal that no difference can be found by human eyes.

  • PDF