• Title/Summary/Keyword: 3 Dimensional Geometry

Search Result 594, Processing Time 0.024 seconds

Design of an Optimal Planar Array Structure with Uniform Spacing for Side-Lobe Reduction

  • Bae, Ji-Hoon;Seong, Nak-Seon;Pyo, Cheol-Sig;Park, Jae-Ick;Chae, Jong-Suk
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2003
  • In this paper, we design an optimal planar array geometry for maximum side-lobe reduction. The concept of thinned array is applied to obtain an optimal two dimensional(2-D) planar array structure. First, a 2-D rectangular array with uniform spacing is used as an initial planar array structure. Next, we modify the initial planar array geometry with the aid of thinned array theory in order to reduce the maximum side-lobe level. This is implemented by a genetic algorithm under some constraint, minimizing the maximum side-lobe level of the 2-D planar array. It is shown that the optimized planar array structure can achieve low side-lobe level without optimizing the excitations of the array antennas.

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF

Development of Powder Injection Mold for Dental Scaler Tip Using Stainless Series Powder (스테인레스계열(17-4PH, 316L, 440C) 분말을 이용한 Dental Scaler Tip 분말사출금형 개발)

  • Ko, Y.B.;Kim, J.S.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.61-66
    • /
    • 2007
  • Powder injection molding(PIM) is widely used for many parts in the field of automotives, electronics and medical industries, due to the capability of net shaping for complex 3-D geometry. Powder injection mold design for the dental scaler tip, a component of medical appliance, was presented. In comparison with conventional machining process, powder injection molding has many advantages, specially in price and dimensional stability, for molding dental scaler tip which has complex geometry. Both product design and mold design for dental scaler tip were presented. A PIM feedstock was made of stainless series(17-4PH, 316L, 440C) powder and a wax based binder. The 'rapid mold' concept was applied to manufacture the various forms and materials of dental scaler tip including vibration characteristics.

Crack growth behavior in the lntegrally stiffened plates(1) -Numerical evaluation of SIF (일체형 보강판의 균열성장거동(I)-SIF의 수치해석)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.150-156
    • /
    • 1997
  • Three dimensional finite element analysis was conducted to estimate the effect of shape parameters (plate width and thickness) on the stress intensity factor for crack in the integrally stiffened plate. Analysis was done for width ratios of 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and thickness ratios of 2, 3, 4, 6. Based on these results, an empirical equation of geometry factor is formulated as a function of crack length and thickness ratio.

  • PDF

Design of A Small Thin Milling Cutter Considering Built-up Edge (구성인선을 고려한 소형 박판 밀링공구의 설계)

  • Jung, Kyoung-Deuk;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.130-136
    • /
    • 2001
  • Generally, a metal slitting saw is plain milling cutter with thickness less than 3/16 inch. This is used for cutting a workpiece that high dimensional accuracy and surface finish is necessary. A small thin milling cutter like a metal slitting saw is useful for machining a narrow groove. In this case, built up edge(BUE) is severe at each tooth and affects the surface integrity of the machined surface and tool wear. It is well known that tool geometry and cutting conditions are decisive factors to remove BUE. In this paper, we optimized the geometry of the milling cutter and selected cutting conditions to remove BUE by the experimental investigation. The experiment was planned with Taguchi method based on the orthogonal array of design factors such as coating, rake angle, number of tooth, cutting speed, feed rate. Response table was obtained from the number of built-up edge generated at tooth. The optimized tool geometry and cutting conditions could be determined through response table. In addition, the relative effect of factors was identified bh the analysis of variance (ANOVA). Finally, coating and cutting speed turned out important factors for BUE.

  • PDF

The Characteristics of Triple Hot-Wire Probe and It's Evaluation (3축 열선 PROBE의 특성과 그 평가)

  • Kim, Kyung-hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.48-62
    • /
    • 1988
  • A triple hot-wire probe has an essential potentiality for the measure- ment of an instantaneous velocity vector in a three dimensional unsteady flow with large amplitude of velocity fluctuations, the key problems asso- ciated with this instrument are the directional range of applicability and the accuracy. This present paper is concerned with a new method of the techniques of calibration and data processing to estimate the three dimensional flow field using an arbitrary shaped triple hot-wire probe. The method is not based on the assumptions of orthogonality or symmetry and it is especially useful for applications to a hand-made probe where probe geometry is not accurately known. The test application is made to evaluate the effect of cone angles of symmetric non-orthogonal probe.

  • PDF

Similitude Study of Performance of Lugged Wheel on Soft Soils (연약지(軟弱地)에서 상사성(相似性) 원리(原理)를 이용(利用)한 차륜(車輪)의 성능분석(性能分析)에 관한 연구(硏究))

  • Lee, K.S.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.220-229
    • /
    • 1993
  • A dimensional analysis was carried out to investigate if model agricultural radial tire can predict the tractive performance of prototype tires. Experimental data was analyzed to prove the results of dimensional analysis. The results was summerized as follows ; 1. When the model and prototype tires are tested under the same soil conditions, inflation pressure, slip and dynamic load, traction coefficient ratio between two tires depend on the geometry of two tires. 2. According to the regression analysis of the experimental data, traction equation parameters of the prototype tires can be predicted from the that of model tire 3. Predicted traction coefficient of prototype tire, calculated from the traction equation paramters, showed good correlation with that of experimental results. Thus it was possible to predict net and gross traction of prototype tire from the model traction equation parameters.

  • PDF

RICCI 𝜌-SOLITONS ON 3-DIMENSIONAL 𝜂-EINSTEIN ALMOST KENMOTSU MANIFOLDS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.613-623
    • /
    • 2020
  • The notion of quasi-Einstein metric in theoretical physics and in relation with string theory is equivalent to the notion of Ricci soliton in differential geometry. Quasi-Einstein metrics or Ricci solitons serve also as solution to Ricci flow equation, which is an evolution equation for Riemannian metrics on a Riemannian manifold. Quasi-Einstein metrics are subject of great interest in both mathematics and theoretical physics. In this paper the notion of Ricci 𝜌-soliton as a generalization of Ricci soliton is defined. We are motivated by the Ricci-Bourguignon flow to define this concept. We show that if a 3-dimensional almost Kenmotsu Einstein manifold M is a 𝜌-soliton, then M is a Kenmotsu manifold of constant sectional curvature -1 and the 𝜌-soliton is expanding with λ = 2.

A Numerical Study on Natural Convection in A Three-Phase GIS Busbar (3상 GIS Busbar내 자연대류에 대한 수치해석적 연구)

  • Wang, Yangyang;Hahn, Sung-Chin;Kim, Joong-Kyoung;Kang, Sang-Mo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.107-108
    • /
    • 2008
  • The temperature rise of GIS (Gas Insulated Switchgear) busbar system is a vital factor that affects its performance. In this paper, a two-dimensional model is presented by commercial code CFX11 for the evaluation of natural convection in the busbar system. In the model, SF6 (Sulfur Hexafluoride) is used to insulate the high voltage device and improves the heat transfer rate. The power losses of a busbar calculated by the magnetic field analysis are used as the input data to predict the temperature rise by the nature convection analysis. The heat-transfer coefficients on the boundaries are analytically calculated by applying the Nusselt number considering material property and model geometry for the natural convection. The temperatures of the tank and conductors from CFX simulation and the experiment were compared. The results show a good agreement. In the future, we will calculate the 3-D model and try to reduce the temperature by adjusting some dimensional parameters.

  • PDF

Non-Euclidean Geometrical Characteristics of Hyperspace in Costume (복식에 표현된 초공간의 비유클리드기하학적 특성)

  • Lee, Yoon-Kyung;Kim, Min-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.5
    • /
    • pp.117-127
    • /
    • 2010
  • In this study, hyperspace is a result of imagination created by means of facts and fiction, represents a transfer to determination and indetermination, and means an extension to an open form. In other words, hyperspace is a high dimensional space expanded to imagination through the combination of the viewpoint on facts in this dimension and fiction. When the 2D plane surface or 3D symmetry is destroyed, or when the frame is twisted or entangled, the non-Euclidean geometry is created eventually. And when the twisting leads to transmutation and the destruction of the form reaches the extreme; this in turn became the twisting like Mbius band. Likewise, the non-Euclidean geometry is co-related to the asymmetry of the Higgs mechanism. When the 'destruction of symmetry' is considered, symmetric theory and asymmetric world can be connected. The asymmetry in turn can maintain balance by arranging the uneven weights at different distances from the shaft. Moreover, at this the concept of the upper, lower, left and right, which was included in the original form, may be crumbled down. The destruction of the symmetry is essential in order to present forecast that coincides with the phenomenon of the real world. Non-Euclidean geometry characteristic is expressed by asymmetry, twists, and deconstruction and its representative characteristic is ambiguity. The boundary between the front, back, upper, lower, inner and outer is unclear, and it is difficult and vague to pinpoint specific location. The design that does not clearly define or determine the direction of wearing costume is indeed the non-oriented design that can be worn without getting restricted by specific direction such as front and back. Non-Euclidean geometry characteristic of hyperspace have been applied to create new shapes through the modification of the substance from traditional clothing of the eastern world to modern fashion. The way of thinking in the 'hyperspace' that used to be expressed in the costumes of the east and the west in the past became the forum for unlimited creation.