• Title/Summary/Keyword: 3 Degree of freedom(3DOF)

Search Result 149, Processing Time 0.032 seconds

Robust $H^{\infty}$ Performance Controller Design with Parameter Uncertainty and Unmodeled Dynamics (파라미터 불확실성 및 모델 불확실성에 대한 $H^{\infty}$ 견실성능 제어기 설계)

  • Lee, Kap-Rai;Oh, Do-Chang;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 1997
  • The method of designing robust two degree of freedom(2 DOF) controllers for linear systems with parameter uncertainties and unmodeled dynamics is presented in this paper. Robust performance condition that accounts for robust model matching of closed loop system and disturbance rejection is derived. Using the robust performance condition, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while prefilter is used to improve the robust model matching properties. The $H^{\infty}$ and $\mu$ controller for six degree of freedom vehicle with parameter variations are designed and compared. Simulations for hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.

  • PDF

Dynamic Analysis of Double Excited 3-DOF Motor Modeling Using Equivalent Magnetic Circuit

  • Rhyu, Se-Hyun;Shin, Hye-Ung;Kim, Min-Soo;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.958-964
    • /
    • 2015
  • This paper implements a model of a double excited three-degree-of-freedom motor (3-DOF) coupled with a PI current controller for position control. The rotational trends of the rotor according to the applied steps are identified using a motion equation. The simulation model is a complete electrical and mechanical model of a 3-DOF motor, which mainly consists of mechanical torque equations, a nonlinear equivalent magnetic circuit, and a PI current controller. This machine is tested using the manufactured control board using the same conditions as in the simulation, where the experimental results also verify the accuracy of the simulation results.

A Study on the 3-DOF Attitude Control of Free-Flying Vehicle (자유 비행체의 3자유도 자세제어에 관한 연구)

  • 박덕기;박문수;김병두;정원재;조성민;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.92-92
    • /
    • 2000
  • Helicopter offer the signigicant advantage over traditional air vehicles, in that the provide extended maneuverability, such as vertical climb, hovering, longitudinal and lateral flight, hovering turns and bank turns. But helicopter have the strong cross couplings and nonlinearities for each lateral, longitudinal and rotational motion mutually. However, it is possible to ignore this couplings for the hovering condition, so using this properties we can control the attitude of helicopter. That is, by implementing the dynamic of each rotational axis(roll, pitch, yaw) of independent mutually, 3-DOF(degree of Freedom) attitude control for the helicopter is possible. In this paper, we identify decoupled input-coutput relations of each three rotational axis about the helicopter mounted on the 3-DOF gimbal by experiment, and on these basis implement 3-DOF attitude controller using the PID control method.

  • PDF

A simple approach for the fundamental period of MDOF structures

  • Zhao, Yan-Gang;Zhang, Haizhong;Saito, Takasuke
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.231-239
    • /
    • 2017
  • Fundamental period is one of the most critical parameters affecting the seismic design of buildings. In this paper, a very simple approach is presented for estimating the fundamental period of multiple-degree-of-freedom (MDOF) structures. The basic idea behind this approach is to replace the complicated MDOF system with an equivalent single-degree-of-freedom (SDOF) system. To realize this equivalence, a procedure for replacing a two-degree-of-freedom (2-DOF) system with an SDOF system, known as a two-to-single (TTS) procedure, is developed first; then, using the TTS procedure successively, an MDOF system is replaced with an equivalent SDOF system. The proposed approach is expressed in terms of mass, stiffness, and number of stories, without mode shape or any other parameters; thus, it is a very simple method. The accuracy of the proposed method is investigated by estimating the fundamental periods of many MDOF models; it is found that the results obtained by the proposed method agree very well with those obtained by eigenvalue analysis.

Improvements of Performance of Multi-DOF Spherical Motor by Double Air-gap Feature

  • Lee, Ho-Joon;Park, Hyun-Jong;Won, Sung-Hong;Ryu, Gwang-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • As the need of electric motor is increased rapidly throughout our society, the various application fields are created and the service market called robot gets expanded as well as the existing industrial market. Out of those, the joint systems such as humanoid that is servo actuator for position control or all fields which require multi-degree of freedom (multi-DOF) require the development of innovative actuator. It is multi-DOF spherical motor that can replace the existing system in multi-DOF operating system. But, multi-DOF spherical motor that has been researched up to date is at the stage which is insufficient in performance or mechanical practicality yet. Thus, first of all the research results and limitation of the previously-researched guide frame-type spherical motors were analyzed and then the feature of double air-gap spherical motor which was devised to complement that was studied. The double air-gap multi-DOF spherical motor is very suitable spherical motor for system applying which requires the multi-DOF operation due to its simple structure that does not require other guide frame as well as performance improvement due to its special shape which has two air-gaps. So, the validity of the study was verified by designing and producing it with 3D-FEM through the exclusive jig for multi-DOF spherical motor.

Kinematic Based Walking Pattern of Biped robot (기구학을 이용한 이족보행 로봇의 보행패턴)

  • Kim, Dong Won
    • Journal of Internet of Things and Convergence
    • /
    • v.4 no.2
    • /
    • pp.7-11
    • /
    • 2018
  • In this paper, kinematic based walking pattern generation of biped walking robot is reviewed. Biped walking robot should be consisted of 6 Degree of Freedom(DOF) for each leg to walk properly in 3 dimensional circumstance. In this paper, simple structure of biped robot is depicted for walking pattern firstly. After fixing path of ankle of the robot, angle joints are coming from kinematic equatioins. Coordination of joints of a robot was set for dynamic analysis also. So walking pattern of a robot will be designed using dynamic equations of coordination of joint angles. Finally, setting of ankle of robot and pattern generation are key procedures of the robot walking.

Design Optimization of Planar 3-DOF Parallel Manipulator for Alignment of Micro-Components (마이크로 부품 조립을 위한 평면 3 자유도 병렬 정렬기의 최적설계)

  • Lee, Jeong-Jae;Song, Jun-Yeob;Lee, Moon-G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.322-328
    • /
    • 2011
  • This paper presents inverse kinematics and workspace analysis of a planar three degree-of-freedom (DOF) parallel manipulator. Furthermore, optimization problem of the manipulator is presented. The manipulator adopts PRR (Prismatic-Revolute-Revolute) mechanism and the prismatic actuators are fixed to the base. This leads to a reduction of the inertia of the moving links and hence enables it to move with high speed. The actuators are linear electric motors. First, the mechanism based on the geometry of the manipulator is introduced. Second, a workspace analysis is performed. Finally, design optimization is carried out to have large workspace. The proposed approach can be applied to the design optimization of various three DOF parallel manipulators in order to maximize their workspace. The performance of mechanism is improved and satisfies the requirements of workspace to align micro-components.

A Study on the Dynamic Modeling of a Hydrostatic Table (유정압 테이블의 동적 Modeling에 관한 연구)

  • 노승국;이찬홍;박천홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.150-156
    • /
    • 1998
  • In this paper, a 3-DOF(Degree Of Freedom) rigid body model is developed for dynamic analysis of a hydrostatic table. The dynamic coefficients, stiffness and damping constant of each pad are calculated from the mass flow continuity condition. The validity of this model is examined in theoretical and experimental method. The dynamic behavior when mass unbalances and local variations of stiffness and damping of pads present is analyzed for real applications of hydrostatic table. Since the theoretical and experimental results show goof agreement. it can be said that the 3-DOF rigid body model is useful for the dynamic model of the table. The analysis reveals that the pitching motion is the dominant mode of vibration, It also reveals that unbalanced loads can increase amplitude of tilting motion and reduce natural frequencies and damping capacity of the hydrostatic table.

  • PDF

The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design (공리적 설계를 이용한 공간형 3자유도 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.

Position Control of a Redundant Flexible Manipulator (여유자유도 유연 매니퓰레이터의 위치제어)

  • 김진수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.83-89
    • /
    • 2001
  • In this paper, we discuss the vibration suppression control of spatial redundant flexible manipulators through pseudo-inversed of Jacobian. In order to verify our method, the experiments are performed for PTP(Point To Point) motion of spa-tial flexible manipulators(1) with no redundancy(2) with one redundant DOF(degree of freedom). Finally, a comparison between these results is presented to show the performance of out approach.

  • PDF