• 제목/요약/키워드: 3 전극계

검색결과 203건 처리시간 0.035초

산화물 전극을 이용한 Rhodamine B의 탈색

  • 박영식;김동석
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2007년도 춘계 학술발표회 발표논문집
    • /
    • pp.370-374
    • /
    • 2007
  • 난분해성 유기물 처리에 적절한 불용성 전극을 선정하고 성능을 평가하기 위하여 1-3 성분계 전극을 이용하여 양이온 염료인 Rhodamine B (RhB)의 전기분해 처리에서 다음의 결론을 얻었다. 1) 반응 2분 후 RhB 농도를 고찰한 결과 RhB 농도감소는 Ru-Sn-Ti/Ti ${\fallingdotseq}$ Ru-Sn-Sb/Ti > Ir-Sn-Sb/Ti > Sn-Sb/Ti > Ru/Ti > Ir/Ti > Pt/Ti의 순서로 나타나 3성분계 > 2성분계 > 1성분계 전극의 순서로 나타났다. Ru를 사용한 전극이 Ir을 사용한 전극보다 1성분계와 3성분계 모두 성능이 우수한 것으로 나타났다. 기존 전극으로 가장 많이 사용되고 있는 Pt 전극의 성능은 가장 떨어지는 것으로 나타났다. 2) RhB 초기 농도감소 속도는 전극 간격이 좁은 것이 유리한 것으로 나타났으나 최종 농도는 비슷하였다. 전극 간격이 좁을수록 전력 면에서 유리한 것으로 나타났다. 면적이 큰 전극이 초기 반응이 빠르고 나타났고 최종농도도 약간 낮은 것으로 나타났으나 차이는 크지 않았다. 면적이 좁은 경우 반응면적이 적지만 전류밀도가 높기 때문에 성능의 차이는 크지 않으나 면적이 적은 전극의 경우 요구 전력량이 높기 때문에 적절한 크기의 전극이 필요한 것으로 사료되었다.

  • PDF

3, 4성분계 DSA 전극의 제조와 성능 평가

  • 박영식;김동석
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2008년도 추계학술발표회 발표논문집
    • /
    • pp.482-487
    • /
    • 2008
  • 성능이 우수한 다성분계 전극을 개발하기 위하여 Ru를 주 전극성분으로 Pt, Sn, Sb 및 Gd를 보조 전극성분으로 하여 3, 4성분계 전극의 성능과 산화제 생성량 및 전극 표면 분석을 행하여 다음의 결과를 얻었다. 1. 2분 동안 단위 W당 제거된 RhB 농토는 Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1로 나타났다. Ru:Sn:Sb=9:1.1 전극에서 발생하는 free Cl, ClO$_2$ 및 H$_2$O$_2$농도가 다른 전극보다 높은 것으로 나타나 산화제 생성경향과 RhB 분해율과는 상관관계가 있는 것으로 사료되었다. 4성분계 전극 중에서 Ru:Sn:Sb:Gd 전극의 성능이 가장 우수한 것으로 나타났으나 3성분계 전극인 Ru:Sn:Sb=9:1.1 전극보다 성능이 떨어지는 것으로 나타났다. Ru:Sn:Sb=9:1:1 전극에서 생성되는 산화제 농도가 다른 두 종류의 산화제 농도보다 높은 것으로 나타났고 4성분 전극의 경우 Ru:Sn:Sb:Gd 전극의 산화제 농도가 Ru:Sn:Sb:Gd 전극이 높거나 유사한 경우로 나타나 산화제 생성 경향과 RhB분해 능과는 상관관계가 있는 것으로 나타났다. 초기 RhB 분해 속도가 높은 전극의 COD 제거율도 높은 것으로 나타났다. OH 라디칼은 발생하지 않지만 염소계 산화제 농도가 높고 RhB제거율이 높아 Ru를 주 성분으로 한 전극의 RhB분해는 주로 간접 산화작용에 의한 것이며, 개발된 3, 4성분계 산화물 전극은 간접 산화용 전극임을 알 수 있었다. 에칭을 하기 전의 Ti판은 표면이 매끄러운 것으로 나타났으며, 35% 염산으로 에칭한 후의 Ti메쉬는 매우 거친 표면조직을 가지는 것을 관찰할 수 있었다. Ru:Sn:Sb=9:1:1 전극과 Ru:Sn:Sb:Gd 전극의 SEM 사진을 관찰한 결과 두 전극 모두 전극 물질이 균일하게 도포되어 있었으며, 두 전극 모두 열소성을 통해 전극 성분을 코팅할 때 발생하는 "mud crack"이 발생한 것이 관찰되었다 EDX 분석에서 Cl이 관찰되었는데, 전극 성분의 불완전 산화로 인한 비양론적 산화물 때문이며 이는 RhB 분해성능과 관련 있는 것으로 사료되었다.

  • PDF

1, 2성분계 DSA 전극의 제조와 성능 평가

  • 박영식;김동석
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2008년도 추계학술발표회 발표논문집
    • /
    • pp.464-467
    • /
    • 2008
  • 성능이 우수한 다성분계 전극을 개발하기 위하여 Pt, Ru, Sn, Sb 및 Gd의 5 종류 금속을 이용하여 1성분계 전극의 성능과 산화제 생성량 및 2성분계 전극의 성능과 산화제 생성 경향을 고찰하여 다음의 결과를 얻었다. 1. RhB 농도 감소는 Ru/Ti > Sb/Ti > Pt/Ti > Sn/Ti > Gd/Ti 전극의 순서로 나타났으나 단위 전력당 2분간 제거된 RhB 농도 감소는 Ru/Ti > Sb/Ti > Pt/Ti > Gd/Ti > Sn/Ti 전극의 순서로 나타났다. 생성된 산화제 농도는 ClO$_2$ > free Cl > H$_2$O$_2$ > O$_3$의 순서였으며 Gd/Ti 전극의 경우 산화제가 거의 생성되지 않는 것으로 나타났다. 모든 전극에서 OH 라디칼이 거의 생성되지 않는 것으로 나타났다. Ru/Ti와 Sb/Ti 전극의 높은 RhB 분해와 산화제 생성 농도는 정확하지는 않지만 상관관계가 있는 것으로 나타났다. 2. Ru계 2성분 전극(Ru-Gd/Ti, Ru-Pt/Ti, Ru-Sn/Ti 및 Ru-Sb/Ti)은 모두 1성분계 전극보다 RhB 분해성능이 높아지는 것으로 나타났으며, Ru계 2성분 전극 중 가장 성능이 우수하였던 전극은 Ru:Sn=9:1 전극으로 나타났다. Sn-Sb/Ti 전극은 Sn:Sb=1:9의 전극 성능이 우수한 것으로 나타났으나 Sb/Ti 전극과의 차이는 크지 않은 것으로 나타났다. Pt계 전극(Pt-Gd/Ti, Pt-Sn/Ti, Pt-Sb/Ti)은 대체로 두 성분 혼합에 따른 RhB 분해효과 상승은 없는 것으로 나타났다. 2성분계 전극 중 RhB 제거 성능이 가장 우수하였던 Ru:Sn=9:1 전극에서 4종류의 산화제 생성 농도가 높은 것으로 나타났다. Ru:Pt=9:1 전극은 RhB 분해 성능이 5 전극 중 가장 낮았으며, 산화제도 생성량이 가장 적은 것으로 나타났다. Ru-Sn/Ti 계 전극의 RhB 분해 성능과 산화제 생성 농도가 실험한 모든 1, 2성분계 전극에서 높은 것으로 나타나 향후 3, 4성분계 전극 제조시 이를 바탕으로 제조하고 다른 물질들은 보조재료로서 사용할 필요성이 있는 것으로 사료되었다.

  • PDF

주석 전기도금과 열압착본딩을 이용한 Bi2Te3계 열전모듈의 제작

  • 윤종찬;최준영;손인준;조상흠;박관호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.129-129
    • /
    • 2017
  • 열전재료는 열에너지를 전기에너지로 또는 전기에너지를 열에너지로 직접 변환하는데 가장 널리 사용되는 재료이다. $Bi_2Te_3$계 열전 재료는 400K 이하의 비교적 저온 영역에서 높은 성능지수(Dimensionless Figure of merit, ZT($={\alpha}2{\sigma}T/{\kappa}$, ${\alpha}$: 제백계수, ${\sigma}$: 전기전도도, T: 절대온도, ${\kappa}$: 열전도도))를 나타내는 열전재료이며 자동차 시트나 정수기 등에 응용되고 있다. 열전모듈은 제조시 수십 개에서 수백 개 이상의 n형 및 p형 열전소자를 알루미나($Al_2O_3$)와 같은 세라믹 기판(substrate) 상에 접합된 동 전극 위에 전기적으로 서로 직렬로 접합시켜 제조한다. 기존의 열전모듈의 제조방법에는 동 전극 위에 위에 Sn합금 분말과 플럭스(flux)의 혼합물인 솔더페이스트를 스크린 인쇄법을 사용하여 동 전극에 도포한 다음, 그 위에 열전소자를 얹고 약 520K의 열풍을 가하여 솔더를 용융시켜 열전소자와 동 전극을 접합시킨다. 스크린 인쇄법에서는 인쇄 압력이 일정하지 않으면, 솔더페이스트 층의 두께가 균일하지 않게 되어 열전소자 접합부의 불량을 유발시킨다. 그러나 열모듈은 단 하나의 접합 불량이 모듈 전체의 열전변환성능에 심각한 영향을 줄 수 있기 때문에 본 연구에서는 이러한 문제점을 해결하기 위해, 솔더페이스트를 도포하지 않고 열전소자를 직접 동 전극과 접합할 수 있는 방법을 고안하였다. 무전해도금을 이용한 니켈층을 형성시킨 $Bi_2Te_3$계 열전소자 표면에 약 $50{\mu}m$의 주석도금층을 전기도금법을 구사하여 형성시켰다. 그 후, wire cutting을 통하여 $3mm{\times}3mm{\times}3mm$의 크기로 절단한 주석도금된 열전소자를 동 전극에 얹고 1.1KPa의 압력을 가하면서 523K의 핫플레이트 위에서 3분간 방치하여 직접(direct) 열압착 접합을 실시하였다. 접합부의 단면을 SEM을 이용하여 관찰한 결과, 동 전극과 열전소자 사이의 계면에 용융 후 응고된 주석층이 결함없이 균일하게 형성된 양호한 접합부를 관찰할 수 있었다. 따라서, 솔더페이스트를 이용하지 않고, 열전소자 표면에 주석도금을 실시한 후, 동 전극과 직접 열압착 본딩을 실시하는 방법은 균일한 접합계면을 얻을 수 있는 새로운 공정으로 기대된다.

  • PDF

피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성 (Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics)

  • 김민일;이영석
    • 공업화학
    • /
    • 제25권2호
    • /
    • pp.193-197
    • /
    • 2014
  • 피치계 활성탄소섬유의 유해가스 감응특성을 알아보고자 피치계 활성탄소섬유와 폴리비닐알코올(PVA)을 이용하여 가스센서용 전극을 제조하였다. 제조된 가스센서용 활성탄소섬유 전극의 물리화학적 특성은 주사전자현미경(SEM) 및 비표면적 측정기(BET)를 이용하여 분석하였다. 또한, 전극의 유해가스 감응특성은 $NH_3$, NO 및 $CO_2$와 같은 여러 유독가스를 이용하여 확인하였다. 가스센서용 활성탄소섬유 전극의 비표면적은 바인더인 PVA에 의하여 활성탄소섬유보다 33% 감소하였지만, 전극의 기공크기분포는 PVA에 의하여 크게 영향을 받지 않았다. 가스센서용 활성탄소섬유 전극은 반도체 기반 가스센서와는 다르게 전자도약에 의해서 유해가스를 감응하였다. 본 연구에서, 활성탄소섬유 전극의 저항은 100 ppm의 $NH_3$ 유해가스에 대하여 7.5% 감소하였으며, 그 $NH_3$ 가스 감응특성이 다른 유해가스보다 뛰어남을 확인하였다.

PDP용 Ag전극 페이스트의 Bi계 프릿 제조 및 특성 (Preparation and Characterization of Bi based frit for Ag Electrode in PDP Application)

  • 김형수;최정철;이병옥;최승철
    • 마이크로전자및패키징학회지
    • /
    • 제10권4호
    • /
    • pp.47-52
    • /
    • 2003
  • PDP전극용 Ag전극 페이스트의 프릿으로 기존의 Pb-based 프릿을 대신 할 수 있는 Bi-based 조성의 새로운 유리조성의 가능성을 검토하였다. PDP디스플레이 응용을 위해 프릿의 저융점화 및 열팽창계수 제어를 행하였고, 이를 전극 페이스트 제조에 적용하여 스크린 프린팅된 전극을 평가하였다. $Bi_2O_3$를 50-60wt%이상 첨가된 $Bi_2O_3-B_2O_3-Al_2O_3$계 조성의 프릿은 연화점이 400∼$480^{\circ}C$, 열팽창계수가 7.31∼$10.02\times 10^{-6}/^{\circ}C$이며, 전극의 단자저항은 4.1∼4.8$\Omega$ 이었다. 본 연구에서 새로이 개발된 Bi계 프릿조성은 Pb계 조성의 프릿에 상당하는 물성을 얻을 수 있었으며, 이를 전극용 페이스트에 적용한 결과, 전극 프린팅에서 퍼짐성과 균일성이 우수하였다. PDP전극용 무연, 무 알카리 프릿으로 Bi계 조성의 적용가능성을 확인할 수 있었다.

  • PDF

축자계 진공차단부에서 발생하는 아크 플라즈마 3차원 수치해석 (Three-Dimensional Numerical Analysis of Arc Plasmas with an Axial Magnetic Field Vacuum Interrupter)

  • 서현석;김윤제;이종철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.249-249
    • /
    • 2011
  • 전력용 개폐장치인 진공차단기의 차단부가 송배전 시스템에 30 [kA] 정도의 커다란 사고전류가 흐르는 것을 방지하기 위하여 동작될 때 차단부 내부 전극 사이에 25,000 [K] 이상의 아크 플라즈마가 발생하게 된다. 두 전극 사이에 발생된 아크 플라즈마는 약 10 ms~20 ms 동안 지속되다가 교류전원의 전류영점 부근에서 회복된 절연성능으로 인하여 자연스럽게 소멸되지만, 대전류 구간동안 아크 플라즈마의 집중 현상 등에 의하여 전극의 심각한 손상 등이 발생되면 절연성능이 요구된 만큼 회복되지 못하여 사고전류를 차단하지 못하며 시스템에 연결된 기기들에게 심각한 손상을 입히고 정전사고를 일으킨다. 본 연구에서는 전자계-열유동 연성해석기법을 이용한 축자계 진공차단부에서 발생하는 아크 플라즈마의 3차원 수치해석을 통하여 전극의 심각한 손상을 입히는 아크플라즈마의 집중 현상에 관한 축자계의 영향을 고찰하고자 한다. 수치해석을 위한 아크 영역은 양극과 음극의 직경과 같은 직경의 원기둥으로 가정하였고, 전자계 해석으로부터 얻어진 로렌츠 힘과 줄열을 열유동 해석을 위한 Navier-Stokes 방정식의 파라미터로 입력하여 해석을 수행함으로써 전자계와 유체역학적인 영역을 동시에 연계한 순차적 일방향 연성해석 기법을 적용하였다. 컵형 축자계 진공차단부 내 아크영역에서의 로렌츠 힘의 특성과 온도분포에 대하여 수치해석을 수행하였고, 크기가 다른 두 로렌츠 힘에 의하여 양극표면으로 집중되는 온도분포의 크기를 비교함으로써 진공아크 플라즈마의 집중현상에 영향을 미치는 주요 요소를 규명할 수 있었다.

  • PDF

템플레이트의 국소 위치에 형성된 전도성 고분자 미세구조물의 전기화학 합성 (Electrochemical Template Synthesis of Conducting Polymer Microstructures at Addressed Positions)

  • 이승현;서수정;윤금희;손용근
    • 전기화학회지
    • /
    • 제7권2호
    • /
    • pp.100-107
    • /
    • 2004
  • 다공성 멤브레인 필터를 템플레이트로 이용하여 전도성 고분자를 중합하면 템플레이트의 형태대로 나노 또는 마이크로 사이즈의 전도성 고분자 구조물을 얻을 수 있다. 본 연구에서는 전기화학 중합법을 템플레이트 합성 과정에 이용하여 전극에 고착된 전도성 고분자 미세 구조물을 얻었다. 이 전기화학 템플레이트 합성 방법에서의 관건은 플라스틱 템플레이트를 ITO 또는 금속 전극위에 부착시키는 일이다, 이 때 전극은 전기화학 특성을 보지하여야 한다 이를 위하여 PEDiTT(poly-3,4-ethylenedithiathiophene) 용액과 PVA (polyvinyl alcohol) 용액을 블랜딩히여 얻은 복합체(composite)를 접착제로 이용하여 다공성 멤브레인 필터를 전극에 부착시켜 템플레이트 전극을 제작하였다. 이 전극을 피롤농도가 0.5M인 중합용액에 넣은 후 전해반응으로 템플레이트의 기공 안으로 폴리피롤이 합성되도록 하였다. 폴리피를 형성여부를 확인하기 위하여 템플레이트의 제거 전과 후의 전극 모습을 SEM이미지로 얻어서 확인하였다 또한 순환전압전류댑으로 전류 곡선을 얻어 확인하였다. 비교적 면적이 큰 작업 전극과 매우 작은 미소전극을 상대전극으로 구성한 전해 중합계를 이용하여 큰 작업 전극의 국소 부분에만 전도성 고분자의 전해중합을 시도하였다. 이를 위하여 마이크로 크기의 전극을 상대전극(Counter Electrode)으로, 그리고 템플레이트가 부착된 전극을 작업 전극(Working Electrode)으로 하는 2전극계를 구성하여 이용하였다. 이 전해계를 이용하여 얻은 미세구조물은 템플레이트의 동공 크기와 같은 크기로 성장하였고 형태는 튜브나 막대기 형태를 보였다. 특히 상대전극의 위치를 조정하여 원하는 위치에 튜브형태의 미세구조물을 합성하였다. 최종 합성조건으로는 $250{\mu}m$ 전극은 인가전위 4V로 100초간 중합시간, 그리고 $10{\mu}m$전극의 경우는 인가 전위 6V에 시간은 30초 동안 중합할 때 고분자가 멤브레인 동공 밖으로 넘쳐나지 않는 만큼 성장함을 알았다.

확산모델을 이용한 다중전자 전극반응에 대한 순환전위법의 전산모델링 (Computational Modeling of Cyclic Voltammetry on Multi-electron Electrode Reaction using Diffusion Model)

  • 조하나;윤도영
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.165-171
    • /
    • 2012
  • 본 연구에서는 전기화학계에서 중요한 다중전자의 이동이 수반되는 전극 반응에 대하여 순환전위법의 특성곡선을 모델링하여, MATLAB 프로그램으로 구현하였다. 전극주변의 전기화학 물질전달계에 대하여 반무한 확산모델의 경계조건을 설정하였고, Fick의 농도방정식은 유한차분법으로 전개하여 수치해를 구하였고, Butler-Volmer 식으로부터 계산된 농도값을 전류의 값으로 전환하였다. 본 연구에서 구현된 수치해는 기존의 실험치들과 합리적으로 설명하고 있었으며, 이를 근거로 다중전자 전기화학 반응계에서 반응메카니즘에 대한 전극반응속도 상수와 CV 주사속도 영향을 효과적으로 해석할 수 있었다.