• Title/Summary/Keyword: 3축 센서

Search Result 402, Processing Time 0.034 seconds

Shallow-depth Tilt Monitoring for Engineering Application (공학적 활용을 위한 천부지반 틸트 모니터링)

  • 이상규
    • The Journal of Engineering Geology
    • /
    • v.3 no.3
    • /
    • pp.279-293
    • /
    • 1993
  • In recent yeaes, the collapses of man made structures have been encountered from time to time due to the deformation of the ground in korea. Furthermore, the possibilities of casasters from the ground deformation suCh as landslide and active fault are atrracting our attention to the deformation monitoring. In this study, two-coordinate tilt which was monitored during six months in order to develop tediniques for prevention of disasters from the ground deformation. The two-coordinate tilt which was detected by a tilt-sensor installed in shallow depth on the slope with the sensitivity of 0.0001 arc.sec in every 10 minutes was recorded continously to PC through the interface with 200-m line coonection. The observed digital tilt data. together with the relevant meteorological data were analyzed in reference to engineering application. During the whole observation period of six months, the net tilt is 10.06 arc.sec to the west and 73.88 arc.sec to the south. Consequently the ground has a tilt of 74.56 arc.sec to the direction of $S7.75^{\circ}W$ with average tilting of 0.02 arc.sec/hour. In spite of such fast and large tilting, it is interpreted in view of engineering aspects that the site is much safe from danger, since both East-West and North-South components of tilt converge as time goes by. Two categories of deformational events are recognized ; one is toward the direction of surface slope and the other is to the direction of increased pore pressure. Tiks are acenain to have a close relation with precipitation of rain. The daily variation of two-coordinate tilt is delayed 4.3 hours in average after the variation of atmospheric temperature. A certain correlation between atmospheric pressure and deformation might be revealed.

  • PDF

Enhancement of Bearing Estimation Performance at Endfire Using Cardioid Inverse Beamforming (좌우분리 역빔형성 기법에 의한 센서 축방향의 방위탐지 성능 향상)

  • 강성현;김의준;윤원식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2001
  • In order to detect the precise port/starboard direction of arrival of target signal in real noisy ocean environments, Inverse beamforming (IBF) algorithm is surveyed theoretically and the detection performances of IBF are analyzed with simulations. Cardioid Inverse beamforming algorithm was proposed for port/starboard discrimination and the performance was studied with simulations. It is shown that IBF has a 3dB array gain advantage over Conventional beamforming (CBF) under ideal conditions. This 3 dB advantage is proven theoretically and illustrated with simulations. The fact that the IBF beamwidth is narrower than the CBF beamwidth by a factor of 0.68 proves the performance of defection and spatial resolution improvement. Comparing the simulation results of Cardioid Inverse beamforming and Conventional Cardioid beamforming, it is shown that Cardioid Inverse beamformer has enhanced performance in minimum detection level, detection accuracy and resolution. Due to the results of moving target bearing detection test in endfire, it is shown that Cardioid Inverse beamformer has better performance, comparing the Conventional Cardioid beamformer.

  • PDF

Design and Implementation of Interactive-typed Bluetooth Device interact with Android Platform-based Contents Character (안드로이드 플랫폼 기반의 콘텐츠 캐릭터와 연동되는 체감형 블루투스 기기의 설계 및 구현)

  • Park, Byoung-Seob;Choi, Hyo-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.127-135
    • /
    • 2014
  • Interactive-typed devices and contents that have been often applied in the field of entertainment and game are the technology that allows you to maximize the enjoyment and participation of users through the interaction of each. In this paper, we designed an interactive-typed smartphone app that is based on the Android platform, implemented the wearable Bluetooth device to control via a interactive interface with a vibration sensor and three-axis acceleration sensor. We tested the functionality and 3-axis motion's operability by using smartphone app, interface interactive-typed device that has been developed, prove useful as a wearable Bluetooth device that has the convenience of the user. Further, it is shown that by implementing the optimized protocol of the sensor data transfer over Bluetooth, it is possible to reduce the malfunction of the content of the smart phone.

3D On-line Handwriting Character Recognition System for Wearable Devices (웨어러블 장치를 위한 3D 온라인 필기인식 시스템)

  • Kim, Minji;Choi, Lynn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.1100-1103
    • /
    • 2014
  • 본 논문에서는 웨어러블 장치에서 펜 형태 또는 손가락 부착 형태의 입력 인터페이스로 사용할 수 있는 3D 온라인 필기인식 시스템을 제안한다. 3 축 가속도 센서와 자이로 센서를 장착한 입력 인터페이스를 사용하여 사용자는 손의 움직임을 통해 웨어러블 기기 또는 스마트 기기에 문자를 입력할 수 있다. 본 연구에서 제안하는 3D 필기인식 시스템은 필기 경로를 복원하여 획을 추출하고, 3 차원 공간의 필기문자에서 나타나는 기울임이나 왜곡, 겹쳐 쓰기를 고려한 특징점 추출 과정을 거친다. 추출한 특징점을 2 단계 결정 트리의 입력으로 사용하여 사용자가 공간상에서 필기한 알파벳을 인식한다. 10 명의 사용자에게 3 회의 필기 데이터를 입력 받아 총 780 개의 문자를 인식한 결과, 87.69%의 인식률을 얻을 수 있었다.

Performance analysis of the optical displacement sensor for accurate in-plane motion measurement (정확한 평면운동 측정을 위한 광 변위센서의 성능분석)

  • Kang, Hoon;Lee, Hunseok;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.639-646
    • /
    • 2016
  • In this study, the contactless measurement method with a optical displacement sensor(ODS, ADNS 9500) was proposed to overcome flaws in a rotary encoder based measurement under particular circumstances, such as a slippage and a case of little rotational inertia. The performance tests of the optical displacement sensor using data acquisition board and National Instruments's LabVIEW program were performed to accomplish accurate displacement measurements and the performance characteristics according to measurement direction, speed, acceleration, height and surface types were discovered through the repetitive tests. The experimental results indicate that, in order to get an accurate in-plane motion, the height(distance between the ODS and the target surface) has to be maintained at the range of 2.4 mm to 3.2 mm and the sensitivity(resolution) should be modified and applied to the formulae for displacement calculation, considering its measurement direction, speed and surface type.

Papers : Attitude Determination Algorithm of LEO Satellites in the Sun - Acquisition Mode (논문 : 태양획득 모드에서 저궤도 위성의 자세결정 알고리즘)

  • An,Hyo-Seong;Lee,Seon-Ho;Lee,Seung-U;Chae,Jang-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.82-87
    • /
    • 2002
  • The attitude determination in LEO Satellite like KOMPSAT is one of the most important issues for Sun-Acquisition. Particularly, in KOMPSAT, the roll axis direction can be determined since the sun sensor gives the information on the Euler angle for pitch and yaw axes in Sun-Acquisition mode. In other words, it is the problem to determine the two unknown axes direction with one axis knowledge. This paper proposes a new effective method for attitude determination of general LEO satellites when one axis information is avilable and proves its usefulness throughout the simulation.

Development of 3-axis finger force sensor for an intelligent robot's hand (로봇의 지능형 손을 위한 3축 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.411-416
    • /
    • 2006
  • This paper describes the development of a 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand. In order to safely grasp an unknown object, robot's hand should measure the weight of an object and the force of grasping direction simultaneous. But, in the published papers, the grippers and hands equippd with the force sensor that could only measure the force of grasping direction, and grasped objects using their sensors. These grippers and hands can't safely grasp unknown objects, because they can't measure the weight of it. Thus, it is necessary to develop 3-axis force sensor that can measure the weight of an object and the force of grasping direction for an intelligent gripper. In this paper, 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand was developed. In order to fabricate a 3-axis finger force sensor, the sensing elements were modeled using parallel plate beams, and the theoretical analysis was performed to determine the size of sensing elements, then the 3-axis finger force sensor was fabricated. Also, the characteristic test of the developed 3-axis finger force sensor was performed.

Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object (미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

Development of a small 6-axis force/moment sensor for robot's finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순;이상호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.490-493
    • /
    • 2003
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures forces Fx. Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction. and perform the control using the measured forces and moments. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My. Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed, and the result shows that interference errors or the developed sensor are less than 3%. Thus, the developed small 6-axis force/moment sensor may be used for robot's gripper.

  • PDF

Development of 6-axis Force/moment Sensor for Humanoid Robot's Head Reacting to a External Force (외력에 반응하는 인간형 로봇의 머리를 위한 6 축 힘/모멘트 센서 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.78-84
    • /
    • 2009
  • When external force is applied to humanoid robot's head, humanoid robot's neck is rotated to prevent the damage of it. So, robot's neck have to perceive forces (Fx of x-direction, Fy of y-direction and Fz of z-direction) and moments (Mx of x-direction, My of y-direction and Mz of z-direction) using the attached 6-axis force/moment sensor. Thus, in this paper, 6-axis force/moment sensor was developed to sense the forces and moments applied to robot's head. The structure of 6-axis force/moment sensor was modeled newly, and it was designed using FEM software (ANSYS) and manufactured by attaching straingages on the sensing element, finally, the characteristic test of the sensor was carried out. As a result, it is confirmed that interference error is less than 3%. And, it is thought that the sensor can be used to measure the forces and the moments for humanoid robot's head.