DOI QR코드

DOI QR Code

Performance analysis of the optical displacement sensor for accurate in-plane motion measurement

정확한 평면운동 측정을 위한 광 변위센서의 성능분석

  • Kang, Hoon (Ultimate Manufacturing R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Hunseok (Underwater Vehicle Research Center, Korea Maritime and Ocean University) ;
  • Oh, Jin-Seok (Division of Marin Engineering, Korea Maritime and Ocean University)
  • Received : 2015.12.17
  • Accepted : 2016.01.21
  • Published : 2016.03.31

Abstract

In this study, the contactless measurement method with a optical displacement sensor(ODS, ADNS 9500) was proposed to overcome flaws in a rotary encoder based measurement under particular circumstances, such as a slippage and a case of little rotational inertia. The performance tests of the optical displacement sensor using data acquisition board and National Instruments's LabVIEW program were performed to accomplish accurate displacement measurements and the performance characteristics according to measurement direction, speed, acceleration, height and surface types were discovered through the repetitive tests. The experimental results indicate that, in order to get an accurate in-plane motion, the height(distance between the ODS and the target surface) has to be maintained at the range of 2.4 mm to 3.2 mm and the sensitivity(resolution) should be modified and applied to the formulae for displacement calculation, considering its measurement direction, speed and surface type.

본 연구에서는 특수한 상황(미끄러짐 발생 및 회전관성이 부하로 작용하는 경우)에서의 회전 엔코더 기반 측정방법의 단점을 극복하기 위하여 광 변위센서(ADNS-9500)를 사용한 비접촉식 변위 측정방법을 제안하였다. 정확한 변위 측정을 위해 데이터 수집 보드와 랩뷰를 활용하여 실험적으로 광 변위센서의 성능을 분석하였으며, 반복실험을 통해 실험조건(측정방향, 속도, 가속도, 높이, 표면 재질)에 따른 광 변위센서의 성능특성을 파악하였다. 성능실험 결과, 광 변위센서를 사용하여 정확하게 평면운동을 측정하기 위해서는 광 변위센서와 지면(대상 물체의 표면)과의 높이를 2.4 mm-3.2 mm로 일정하게 유지시켜야 하며, 각각의 축 방향, 속도, 표면 재질을 고려하여 민감도를 수정하여 변위 계산식에 적용해야 하는 것을 확인하였다.

Keywords

References

  1. J. Palacin, I. Valganon, and R. Pernia, "The optical mouse for indoor mobile robot odometry measurement," Sensors and Actuators-A Physical, vol. 126, no. 1, pp. 141-147, Sep. 2006. https://doi.org/10.1016/j.sna.2005.09.015
  2. N. Tunwattana, A.P. Roskilly, and R. Norman, "Investigations into the effect of illumination and acceleration on optical mouse sensors as contact-free 2D measurement devices," Sensors and Actuators-A Physical, vol. 149, no. 1, pp. 87-92, Oct. 2009. https://doi.org/10.1016/j.sna.2008.10.016
  3. N. N. A. Charniya, and S. V. Dudul, "Simple low-cost system for thickness measurement of metallic plates using laser mouse navigation sensor," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 10, pp. 2700-2705, Sep. 2010. https://doi.org/10.1109/TIM.2010.2045555
  4. M. Tresanchez, T. Palleja, M. Teixido, and J. Palacin, "The optical mouse sensor as an incremental rotary encoder," Sensors and Actuators-A Physical, vol. 155, no. 1, pp. 73-81, Aug. 2009. https://doi.org/10.1016/j.sna.2009.08.003
  5. M. Tresanchez, T. Palleja, M. Teixido, and J. Palacin, "Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder," Sensors and Actuators-A Physical, vol. 158, no. 1, pp. 161-167, Nov. 2010. https://doi.org/10.1016/j.sna.2009.12.023
  6. T. W. Ng, "The optical mouse as a two-dimensional displacement sensor," Sensors and Actuators-A Physical, vol. 107, no. 1, pp. 21-25, July 2003. https://doi.org/10.1016/S0924-4247(03)00256-5
  7. U. Minoni, and A. Signorini, "Low-cost optical motion sensors: An experimental characterization," Sensors and Actuators-A Physical, vol. 128, no. 2, pp. 402-408, Jan. 2006. https://doi.org/10.1016/j.sna.2006.01.034
  8. X. Wang, and K. Shida, "Optical mouse sensor for detecting height variation and translation of a surface," IEEE International Conference on Industrial Technology, Chengdu, pp. 21-24, 2008.
  9. A. Bonarini, M. Matteucci, and M. Restelli, "Automatic error detection and reduction for an odometric sensor based on two optical mice," Proceedings of the 2005 IEEE Internation Conference on Robotics and Automation, pp. 1675-1680, Apr. 2005.
  10. D. J. Hyun, H. S. Yang, H. R. Park and H. S. Park, "Differential optical navigation sensor for mobile robots," Sensors and Actuators-A Physical, vol. 156, no. 2, pp. 296-301. Oct. 2009. https://doi.org/10.1016/j.sna.2009.10.007
  11. J. D. Jackson, D. W. Callahan, and J. Marstrander, "A rationale for the use of optical mice chips for economic and accurate vehicle tracking," Proceedings of the 3rd Annual IEEE Conference on Automation Science and Engineering, Scottsdale(Arizona), pp. 489-498, Sep. 2007.
  12. J. Ziz ka, A. Olwal, and R. Raskar, "SpeckleSense: fast, precise, low-cost and compact motion sensing using laser speckle," Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 489-498, Oct. 2011.