Lee Jong-Shill;Lee Eung-Hyuk;Kim In-Young;Kim Sun-I.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.43
no.3
s.309
/
pp.8-15
/
2006
Obstacle detection is an important task for many mobile robot applications. The methods using stereo vision and optical flow are computationally expensive. Therefore, this paper presents a vision-based obstacle detection method using only two view images. The method uses a single passive camera and odometry, performs in real-time. The proposed method is an obstacle detection method using 3D reconstruction from taro views. Processing begins with feature extraction for each input image using Dr. Lowe's SIFT(Scale Invariant Feature Transform) and establish the correspondence of features across input images. Using extrinsic camera rotation and translation matrix which is provided by odometry, we could calculate the 3D position of these corresponding points by triangulation. The results of triangulation are partial 3D reconstruction for obstacles. The proposed method has been tested successfully on an indoor mobile robot and is able to detect obstacles at 75msec.
This paper proposes an efficient walktlu-ough animation from two images of the same scene. To make animation easily and fast, Tour Into the Picture(TIP) enables walkthrough animation from single image but lacks the reality of its foreground object when the viewpoint moves from side to side, and view morphing uses only 2D transition between two images but restricts its camera path on the line between two views. By combining advantages of these two image-based techniques, this paper suggests a new virtual navigation technique which enable natural scene transformation when the viewpoint changes in the side-to-side direction as well as in the depth direction. In our method, view morphing is employed only in foreground objects , and background scene which is perceived carelessly is mapped into cube-like 3D model as in TIP, so as to save laborious 3D reconstruction costs and improve visual realism simultaneously. To do this, we newly define a camera transformation between two images from the relationship of the spidery mesh transformation and its corresponding 3D view change. The result animation shows that our method creates a realistic 3D virtual navigation using a simple interface.
Journal of the Institute of Convergence Signal Processing
/
v.4
no.3
/
pp.34-40
/
2003
The paper presents a method to detect dissolve shots of video scene change detections in an MPEG compressed domain. The proposed algorithm uses color-R DCT coefficients of Ⅰ, P-frames for a fast operation and accurate detection and a minimum decoding process in MPEG sequences. The paper presents a method to detect dissolve shot for three-dimensional visualization and analysis of Image in order to recognize easily in computer as a human detects accurately shots of scene change. First, Color-R DCT coefficients for 8*8 units are obtained and the features are summed in a row. Second, Four-step analysis are Performed for differences of the sum in the frame sequences. The experimental results showed that the algorithm has better detection performance, such as precision and recall rate, than the existing method using an average for all DC image by performing four step analysis. The algorithm has the advantage of speed, simplicity and accuracy. In addition. it requires less amount of storage.
In Augmented Reality, it needs restoration and tracking of a real-time scene structure for the augmented 3D model from input video or images. Most of the previous approaches construct accurate 3D models in advance and try to fit them in real-time. However, it is difficult to measure 3D model accurately and requires long pre-processing time to construct exact 3D model specifically. In this research, we suggest a real-time scene structure analysis method for the wide indoor mobile augmented reality, using only generic models without exact pre-constructed models. Our approach reduces cost and time by removing exact modeling process and demonstrates the method for restoration and tracking of the indoor repetitive scene structure such as corridors and stairways in different scales and details.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.4-7
/
2022
Recently, multi-view depth estimation methods using deep learning network for the 3D scene reconstruction have gained lots of attention. Multi-view video contents have various characteristics according to their camera composition, environment, and setting. It is important to understand these characteristics and apply the proper depth estimation methods for high-quality 3D reconstruction tasks. The camera setting represents the physical distance which is called baseline, between each camera viewpoint. Our proposed methods focus on deciding the appropriate depth estimation methodologies according to the characteristics of multi-view video contents. Some limitations were found from the empirical results when the existing multi-view depth estimation methods were applied to a divergent or large baseline dataset. Therefore, we verified the necessity of obtaining the proper number of source views and the application of the source view selection algorithm suitable for each dataset's capturing environment. In conclusion, when implementing a deep learning-based depth estimation network for 3D scene reconstruction, the results of this study can be used as a guideline for finding adaptive depth estimation methods.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.40
no.5
/
pp.347-356
/
2003
Camera pose and scene geometry estimation from video sequences is widely used in various areas such as image composition. Structure and motion recovery based on the auto calibration algorithm can insert synthetic 3D objects in real but un modeled scenes and create their views from the camera positions. However, most previous methods require bundle adjustment or non linear minimization process [or more precise results. This paper presents a new auto' calibration algorithm for video sequence based on two steps: the one is key frame selection, and the other removes the key frame with inaccurate camera matrix based on an absolute quadric estimation by LMedS. In the experimental results, we have demonstrated that the proposed method can achieve a precise camera pose estimation and scene geometry recovery without bundle adjustment. In addition, virtual objects have been inserted in the real images by using the camera trajectories.
In this paper, we present a new method for reconstructing detailed facial expression from roughly captured data with a small number of markers. Because of the difference in the required capture resolution between the full-body capture and the facial expression capture, they hardly have been performed simultaneously. However, for generating natural animation, a simultaneous capture for body and face is essential. For this purpose, we provide a method for capturing the detailed facial expression only with a small number of markers. Our basic idea is to build a database for the facial expressions and apply the principal component analysis for reducing the dimensionality. The dimensionality reduction enables us to estimate the full data from a part of the data. We justify our method by applying it to dynamic scenes to show the viability of the method.
In this paper, we propose a high-resolution disparity map generation method using a low-resolution time-of-flight (TOF) depth camera and color camera. The TOF depth camera is efficient since it measures the range information of objects using the infra-red (IR) signal in real-time. It also quantizes the range information and provides the depth image. However, there are some problems of the TOF depth camera, such as noise and lens distortion. Moreover, the output resolution of the TOF depth camera is too small for 3D applications. Therefore, it is essential to not only reduce the noise and distortion but also enlarge the output resolution of the TOF depth image. Our proposed method generates a depth map for a color image using the TOF camera and the color camera simultaneously. We warp the depth value at each pixel to the color image position. The color image is segmented using the mean-shift segmentation method. We define a cost function that consists of color values and segmented color values. We apply a weighted average filter whose weighting factor is defined by the random walk probability using the defined cost function of the block. Experimental results show that the proposed method generates the depth map efficiently and we can reconstruct good virtual view images.
In this paper, we propose a system which estimates Manhattan coordinate systems for urban scene images using a convolutional neural network (CNN). Estimating the Manhattan coordinate system from an image under the Manhattan world assumption is the basis for solving computer graphics and vision problems such as image adjustment and 3D scene reconstruction. We construct a CNN that estimates Manhattan coordinate systems based on GoogLeNet [1]. To train the CNN, we collect about 155,000 images under the Manhattan world assumption by using the Google Street View APIs and calculate Manhattan coordinate systems using existing calibration methods to generate dataset. In contrast to PoseNet [2] that trains per-scene CNNs, our method learns from images under the Manhattan world assumption and thus estimates Manhattan coordinate systems for new images that have not been learned. Experimental results show that our method estimates Manhattan coordinate systems with the median error of $3.157^{\circ}$ for the Google Street View images of non-trained scenes, as test set. In addition, compared to an existing calibration method [3], the proposed method shows lower intermediate errors for the test set.
This paper presents a multi-depth map fusion method for the 3D scene reconstruction. It fuses depth maps obtained from the stereo matching technique and the depth camera. Traditional stereo matching techniques that estimate disparities between two images often produce inaccurate depth map because of occlusion and homogeneous area. Depth map obtained from the depth camera is globally accurate but noisy and provide a limited depth range. In order to get better depth estimates than these two conventional techniques, we propose a depth map fusion method that fuses the multi-depth maps from stereo matching and the depth camera. We first obtain two depth maps generated from the stereo matching of 3-view images. Moreover, a depth map is obtained from the depth camera for the center-view image. After preprocessing each depth map, we select a depth value for each pixel among them. Simulation results showed a few improvements in some background legions by proposed fusion technique.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.