• Title/Summary/Keyword: 3차원 인체측정

Search Result 121, Processing Time 0.023 seconds

Comparative Analysis of Body Measurement and Fit Evaluation between 2D Direct Body Measuring and 3D Body Scan Measuring (직접측정과 3차원 측정에 따른 인체치수 및 의복 착장 비교분석)

  • Istook, Cynthia L.;Lim, Ho-Sun;Chun, Jong-Suk
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.6
    • /
    • pp.1347-1358
    • /
    • 2011
  • This study purposed to analyze differences in body measurement between the 2D direct body measuring method and the 3D body scan measuring method and to perform the appearance evaluation and cross-sectional evaluation of the fit of pants to which body measurements obtained by each measuring method were applied. Body measuring was conducted in 10 women in their 20s-30s using 2D direct body measuring and 3D automatic measuring with Hamamatsu body scanner. Among the 10 women, 3 participated in experimental garment wearing. Experimental pants were made using their 2D direct body measurements and 3D automatic measurements, and wearing tests were performed through expert evaluation and cross-sectional evaluation. The results of the experiment were as follows. According to the results of comparative analysis on differences between 2D direct body measurements and 3D scan measurements, 3D automatic measurements were significantly larger in bust circumference, ankle circumference, armscye circumference, shoulder length, scye depth, and arm length. As circumferences measured with the 3D body scanner were somewhat larger than directly measured ones, it is suggested to adjust ease when using existing pattern making methods. We prepared experimental garments by the same pattern making method through applying body measurements obtained with the two measuring methods, and assessed the fit of the garment comparatively through expert evaluation and 3D scan cross-sectional evaluation. According to the results, 2D-pants using 2D direct body measurements was slightly tighter than 3D-pants using 3D measurements in waist circumference, hip circumference, and abdominal circumference. In the results of comparing appearance in terms of the fit of the experimental garment in each subject, significant difference was observed in most of the compared items. This result suggests that 3D automatic body measuring data may show different accuracy according to body shape and therefore it is necessary to examine difference between 2D direct body measurements and 3D automatic measurements according to body shape.

Makerless Tracking System for Motion Capture of Human Organism (인체동작 인식을 위한 마커리스 트래킹 시스템)

  • Ahn, Se-Jong;Shin, Sung-Wook;Lee, Hyun-Suk;Lim, Chang-Joo;Park, Young-Jin;Chung, Sung-Taek
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.241-243
    • /
    • 2011
  • 인체동작 인식에 대한 연구는 재활치료, 운동선수의 동작 교정 및 모니터링, 3차원 애니메이션 제작등 많은 분야에서 필요로 하고 있다. 동작 인식에 대한 일반적인 방법으로는 반사 마커를 부착하여 여러 대의 적외선 카메라로 관절 운동을 관찰하는 방식이였다. 이러한 방식은 여러 개의 마커를 사용자들이 옷을 벗고 몸에 붙이거나 특수 복장을 착용해야 하는 불편함이 있을 뿐만 아니라 초기 위치 보정에도 많은 시간이 소모된다. 이와 같은 문제점을 해결하기 위하여 본 연구에서는 어떠한 특수 장비를 착용하거나 몸에 부착하지 않고 즉각적으로 인체의 움직임을 트래킹 할 수 있는 마커리스 트래킹시스템을 개발하였다. 이 시스템은 사람의 동작 분석을 하는데 있어 빠르게 측정 및 분석이 가능하고 특수 장비를 착용하지 않아도 됨으로 인해 동작에 방해를 받지 않아서 3차원 영상을 즉각적으로 확인할 수 있는 편리성을 갖추고 있다.

  • PDF

Evaluation of Target Position's Accuracy in 2D-3D Matching using Rando Phantom (인체팬톰을 이용한 2D-3D 정합시 타켓위치의 정확성 평가)

  • Jang, Eun-Sung;Kang, Soo-Man;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Purpose: The aim of this study is to compare patient's body posture and its position at the time of simulation with one at the treatment room using On-board Imaging (OBI) and CT (CBCT). The detected offsets are compared with position errors of Rando Phantom that are practically applied. After that, Rando Phantom's position is selected by moving couch based on detected deviations. In addition, the errors between real measured values of Rando Phantom position and theoretical ones is compared. And we will evaluate target position's accuracy of KV X-ray imaging's 2D and CBCT's 3D one. Materials and Methods: Using the Rando Phantom (Alderson Research Laboratories Inc. Stanford. CT, USA) which simulated human body's internal structure, we will set up Rando Phantom on the treatment couch after implementing simulation and RTP according to the same ways as the real radioactive treatment. We tested Rando Phantom that are assumed to have accurate position with different 3 methods. We measured setup errors on the axis of X, Y and Z, and got mean standard deviation errors by repeating tests 10 times on each tests. Results: The difference between mean detection error and standard deviation are as follows; lateral 0.4+/-0.3 mm, longitudinal 0.6+/-0.5 mm, vertical 0.4+/-0.2 mm which all within 0~10 mm. The couch shift variable after positioning that are comparable to residual errors are 0.3+/-0.1, 0.5+/-0.1, and 0.3+/-0.1 mm. The mean detection errors by longitudinal shift between 20~40 mm are 0.4+/-0.3 in lateral, 0.6+/-0.5 in longitudinal, 0.5+/-0.3 in vertical direction. The detection errors are all within range of 0.3~0.5 mm. Residual errors are within 0.2~0.5 mm. Each values are mean values based on 3 tests. Conclusion: Phantom is based on treatment couch shift and error within the average 5mm can be gained by the diminution detected by image registration based on OBI and CBCT. Therefore, the selection of target position which depends on OBI and CBCT could be considered as useful.

  • PDF

Tracking a Walking Motion Based on Dynamics Using a Monocular Camera (단일 카메라를 이용한 동역학 기반의 보행 동작 추적)

  • Yoo, Tae-Keun;Choi, Jae-Lim;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Gait analysis is an examination which extracts objective information from observing human gait and assesses the function. The equipments used recently for gait analysis are expensive due to multiple cameras and force plates, and require the large space to set up the system. In this paper, we proposed a method to measure human gait motions in 3D from a monocular video. Our approach was based on particle filtering to track human motion without training data and previous information about a gait. We used dynamics to make physics-based motions with the consideration of contacts between feet and base. In a walking sequence, our approach showed the mean angular error of $12.4^{\circ}$ over all joints, which was much smaller than the error of $34.6^{\circ}$ with the conventional particle filter. These results showed that a monocular camera is able to replace the existing complicated system for measuring human gait quantitatively.

A Study on the Virtual Grating Projection Moire Topography for the Shape Measurement of Human Face (인체형상 측정을 위한 가상격자 영사식 무아레 방법에 관한 연구)

  • 유원재;최정표;안중근;강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.49-52
    • /
    • 2001
  • Moire topography method is a well-known non-contacting 3-D measurement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using projection moire topogrphy is very attractive because of it s high measuring speed and high sensitivity. In this paper, using two-wavelength method of projection moire topography tested to measuring object with the $2\pi$-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding absolute fringe orders, so that the $2\pi$-ambiguity problem can be effectively overcome so as to treat large step discontinuities in measured objects.

  • PDF

A study on the variation trends and characteristics of the adolescent girls' breast growth based on 3D body measurements - Focused on the ages from 13 to 18 - (3차원 인체 측정을 이용한 청소년기 여성의 유방 발육 변화 추이 및 특성 연구 - 만 13~18세를 중심으로 -)

  • Choi, So-Young;Chun, Jongsuk
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.6
    • /
    • pp.943-954
    • /
    • 2014
  • The purpose of this study was to analyze the breast growth variation trends and characteristics of Korean adolescent girls based on 3D body measurements. Subjects were 174 girls aged between 13 and 18. 3D body scanning data were collected and the data were measured by Geomagic Design X program. The total of 18 anthropometric measurements and 4 index items were analyzed. The main results of this study are as follows: 1) Overall, the breast growth of adolescent girls got out of children's body shapes at the age of 14 and the adult's body shapes appeared remarkably at the age of 18. Before the age of 15, the adolescent girls' breast enlarged. 2) The surface lengths of upper body, which means the breast volume, showed significant growth above B cup groups rather than under A cup groups. The demand of B cup size (32.2%) was higher than A cup size (25.9%). And 35.6% of subjects' brassiere band size was 70. 3) The thorax grew evenly in the circumference, depth and breadth. The thoracic development related to the breast volume as well as the whole upper body's development. These results reveal that it is necessary to develop adolescent girls' brassiere reflecting on adolescent girls' breast growth variation trends and characteristics by age, breast size and thoracic development.

Computation of Ground Reaction Forces During Gait using Kinematic Data (보행의 운동학적 데이터를 이용한 지면반발력 계산)

  • Song, Sung-Jae;Kim, Sei-Yoon;Kim, Young-Tae;Lee, Sang-Don
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • The purpose of this study is to compute the ground reaction forces during gait in the absence of force plates. The difficulties in using force plates for hemiparetic patients inspired us to initiate this study. Level-walking experiments were performed using a three-dimensional motion analysis system with synchronized force plates. Kinematic data were obtained from the three-dimensional trajectories of reflective markers. Gait events were also detected from the kinematic data. The human body was modeled as 13 rigid segments. The mass and the center of mass of each segment were determined from anthropometric data. Vertical ground-reaction forces obtained from the kinematic data were in good agreement with those obtained using the force plate. The computed and measured values of anterior and lateral ground reaction showed similar tendencies. The computation results can be used as the basic data for inverse dynamic analysis.

Finding the Geometric Features of a Tooth (치아의 기하학적 특성 찾기)

  • 장진호;김병오;유관희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.619-621
    • /
    • 2001
  • 최근 몇 년간 의학 분야에서는 인체의 해부학적 구조를 컴퓨터 그래픽스 기술을 통해 컴퓨터로 재구성하려는 시도에 많은 관심을 쏟아졌다. 이러한 관심은 치과 치료분야에서도 이루어져 왔는데, 컴퓨터 그래픽스르 이용한 치과 치료에도 많은 응용 분야가 있다. 자료를 측정한다거나, 시각적으로 3차원의 영상을 보여준다거나, CAD-CAM 기술을 이용하여 의치의 틀이나 금형등을 제작할 수도 있다. 본 논문은 이러한 다양한 응용에 기반 기술이 될 수 있는 치아의 기하학적 특성을 정의 하고, 이것을 찾기 위한 여러 가지 방법을 실험해보고, 더 나은 방법을 제시하고자 한다.

  • PDF

Development of 2.5D Electron Dose Calculation Algorithm (2.5D 전자선 선량계산 알고리즘 개발)

  • 조병철;고영은;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1999
  • In this paper, as a preliminary study for developing a full 3D electron dose calculation algorithm, We developed 2.5D electron dose calculation algorithm by extending 2D pencil-beam model to consider three dimensional geometry such as air-gap and obliquity appropriately. The dose calculation algorithm was implemented using the IDL5.2(Research Systems Inc., USA), For calculation of the Hogstrom's pencil-beam algorithm, the measured data of the central-axis depth-dose for 12 MeV(Siemens M6740) and the linear stopping power and the linear scattering power of water and air from ICRU report 35 was used. To evaluate the accuracy of the implemented program, we compared the calculated dose distribution with the film measurements in the three situations; the normal incident beam, the 45$^{\circ}$ oblique incident beam, and the beam incident on the pit-shaped phantom. As results, about 120 seconds had been required on the PC (Pentium III 450MHz) to calculate dose distribution of a single beam. It needs some optimizing methods to speed up the dose calculation. For the accuracy of dose calculation, in the case of the normal incident beam of the regular and irregular shaped field, at the rapid dose gradient region of penumbra, the errors were within $\pm$3 mm and the dose profiles were agreed within 5%. However, the discrepancy between the calculation and the measurement were about 10% for the oblique incident beam and the beam incident on the pit-shaped phantom. In conclusions, we expended 2D pencil-beam algorithm to take into account the three dimensional geometry of the patient. And also, as well as the dose calculation of irregular field, the irregular shaped body contour and the air-gap could be considered appropriately in the implemented program. In the near future, the more accurate algorithm will be implemented considering inhomogeneity correction using CT, and at that time, the program can be used as a tool for educational and research purpose. This study was supported by a grant (#HMP-98-G-1-016) of the HAN(Highly Advanced National) Project, Ministry of Health & Welfare, R.O.K.

  • PDF