대부분의 모바일 공간정보 획득시스템은 촬영범위가 좁고 기선 길이에 대한 제약이 따르는 프레임 카메라를 탑재하고 있다, 촬영지점을 기준으로 모든 방향으로의 영상정보 획득이 기능한 전방위 카메라 탑재를 통해 프레임 카메라의 촬영 범위 및 기선 거리에 대한 문제점을 해결할 수 있다. 광속조정법(Bundle Block Adjustment)은 다수의 중첩된 영상의 외부표정요소를 결정하는 대표적인 지오레퍼런싱(Georeferencing) 방법이다. 본 연구에서는 전방위 영상에 적합한 광속조정법의 수학적 모델을 제안하여 전방위 영상의 외부표정요소 및 지상점을 추정하고자 한다. 먼저 전방위 영상에 적합한 공선조건식을 이용해 관측방정식을 수립한다. 그리고 지상 모바일매핑시스템(GMMS, Ground Mobile Mapping System)에 탑재되어 있는 GPS/INS로부터 획득된 데이터와 정지 GPS 및 토털 스테이션(Total Station)을 통해 측정한 지상기준점을 이용한 확률제약조건 (Stochastic Constraints)식을 수립한다. 마지막으로 확률제약조건 요소 및 추정 미지수를 조합하여 다양한 종류의 수학적 모델을 수립하고 모델별로 추정된 지상점 좌표의 정확도를 검증한다. 그 결과, 지상기준점을 확률제약조건으로 사용하는 모델에 적용한 경우에 지상점이 ${\pm}5cm$ 정도로 정확하게 추정되었다. 연구의 결과를 통해 전방위 카메라 영상으로부터 대상객체의 3차원 모델 추출이 가능함을 알 수 있었다.
하천시설물은 정보의 관리주체가 국가하천과 지방하천 등에 따라 달라서 통합되어 관리되지 못하고 있는 점, 설계 및 시공 단계의 정보화 축적이 미흡하여 시설물 정보의 망실이 우려되는 점 등 하천분야로 BIM 도입을 하기 위해서는 해결해야 할 과제들이 산재해 있다. 또한, 이로 인해 유지운영단계에서의 시설물 정보 활용 수준 역시 상당히 미흡한 편이다. 따라서, 하천시설물의 효과적인 유지운영을 위해서는 표준분류체계에 따라 시설물 정보를 정리함으로 데이터의 일관성을 확보하고 효율성을 증대시킬 필요가 있다. 본 연구에서는 이러한 하천분야의 시설물 특성을 고려하여 하천분야의 BIM 정보모델 도입과 3차원 기반의 하천시설의 효율적인 유지운영 전환을 위한 BIM 표준분류체계를 적용하는 방안을 제시한다.
스마트 스피커는 인공지능을 활용하여 음악, 일정, 날씨, 상품 등 다양한 정보와 콘텐츠들을 검색, 이용할 수 있는 대화형 음성 기반 서비스를 제공하는 기기이다. 인공지능 기술은 데이터가 축적될수록 이를 활용하여 더욱 정교하고 최적화된 서비스를 이용자에게 제공한다. 따라서 스마트 스피커 제조사들은 초기에 공격적인 마케팅을 통해 플랫폼 구축에 힘썼다. 하지만 스마트 스피커의 사용빈도는 월 1회 미만이 전체의 3분의 1 이상을 차지하고, 사용자 만족도도 49%에 그치는 것으로 나타났다. 이에 지속적인 이용활성화와 만족도 증진을 위해 스마트 스피커의 사용자 경험을 강화할 필요성이 대두되었다. 이에 본 연구에서는 스마트 스피커의 사용자 경험을 분석하고, 이를 바탕으로 스마트 스피커의 사용자 경험 강화 방안을 제시하고자 한다. 본 연구는 사용자가 직접 작성한 실제 리뷰 데이터를 수집하여 스마트 스피커 사용자 경험 차원을 기반으로 분석 결과를 해석했다는 점에서 의의가 있다. 또한 스마트 스피커 사용자 경험 차원을 개발하여 텍스트 마이닝 결과를 해석한 것에서 학술적 의의가 있다. 본 연구 결과를 통해 스마트 스피커 제조사에게 실무적으로 사용자 경험 강화를 위한 전략을 제안할 수 있다.
Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.
Journal of Advanced Marine Engineering and Technology
/
제37권8호
/
pp.893-904
/
2013
NSGA-II와 함께 크리깅 메타모델기반 다목적최적설계 전략을 3차원 CFD 시뮬레이션을 통해 액셜 피스톤 펌프의 밸브 플레이트 형상을 최적화하는데 적용하였다. 펌프의 압력 변동을 저감하고 수력 효율을 최대화하기 위한 최적설계 과정은 두 단계, 즉 (1) 밸브 플레이트 상의 6개 형상 설계 변수를 선정하고 각 설계변수의 변화에 따른 CFD 해석을 수행하며, (2) CFD 데이터를 이용한 NSGA-II에 기반한 다목적최적설계 접근방식으로 최소 맥동 압력과 펌프 효율 설계에 대해 파레토 프론트를 평가하는 것으로 구성된다. 이들 결과로부터 최소 맥동 압력을 가지며 액셜 피스톤 펌프의 목표 효율에 도달하는 최적 절충해를 선택할 수 있었다.
디지털 기술의 발달로 무치악 부위의 임플란트 수복 시 그 진단과 치료 과정 전반에 걸쳐 구강 내 3차원 정보를 데이터화하여 보철물을 제작하는 것이 가능해졌다. 전통적인 인상채득 방식을 이용하여 모델을 만들고 이것을 스캔하여 보철물을 제작하던 CAD/CAM 이용 방식에서 벗어나 디지털 인상 코핑(scanbody)을 사용함으로써 모델 없이 디지털 인상을 채득하고 임플란트 임시 보철물 및 해부학적 지대주를 제작하는 술식으로 변화하고 있다. 그러나 아직 이러한 술식은 활발히 이루어지고 있지 않으며 특히 심미성이 요구되어 연조직 외형의 인기가 중요한 상악 전치부 임플란트 즉시 부하에서의 사용은 그 사례가 많지 않다. 이에 따라 본 증례 보고에서는 3명의 상악 전치부 단일 임플란트 수복 환자에서 디지털 인상 코핑(scanbody)을 체결한 후 구강 내 스캐너인 CEREC Omnicam (Sirona, Bensheim, Germany) 또는 Trios (3shape, Copenhagen, Denmark)로 디지털 인상채득을 통해 임플란트 지대주 및 임시 보철물을 제작하였다. 그 결과 디지털 인상채득을 통한 편리성, 정확성 그리고 최종 보철물의 양호한 심미성을 얻어 보고하고자 한다.
고속도로 이용차량의 증가와 함께 차량의 대형화와 고속화로 인해 고속도로 교통 소음레벨이 높아지고 있으며 저소음 포장노면 및 방음시설 설치 요청도 급격하게 증가하고 있다. 따라서 고속도로 교통소음으로 인한 민원예방과 함께 효율적이고 경제적인 소음저감 대책을 수립하기 위해서는 정확한 소음 예측 기술 마련이 필요하다. 본 연구에서는 시험도로에 포설된 다양한 포장노면에 대해서 CPX(Close Proximity Test) 및 Pass-by 소음 계측 방법을 혼용한 소음 계측 데이터를 이용하였고 차종별 단독 주행 시험을 실시하여 차량 및 노면별 음향파워레벨 산정식이 마련된 데이터를 이용하였다. 아울러, 상기 산정식의 정확성을 검증하기 위하여 고속도로 12개 지점에 대한 총 38회의 소음 계측한 데이터를 이용하여 해당 지점에 대한 소음 예측 모델을 구성하여 측정값과 예측값을 비교 평가하였다. 최종적으로 3차원 GUI 기능을 지원하는 도로교통 소음 예측 프로그램 KRON(Korea Road Noise)을 개발하였다. 이와 더불어 각 포장형태별 및 차종별에 따른 소음특성을 분석하였다.
건설 산업의 전반적인 생산성 향상을 위하여 시설물의 전 생애주기에 걸쳐 정보의 시스템화가 요구되고 있다. 정보를 시스템화하는 방법의 하나로 3차원 정보모델을 기반으로 정보 관리하는 기술인 BIM(Building Information Modeling)이 활발하게 연구되고 있다. 하지만 BIM 연구의 초점은 대형 사업장에 맞추어져 있으며 중소규모 사업장을 위한 BIM 연구는 미비한 실정이다. 중소규모 사업장의 경우 대형 사업장보다 정보 손실이 더욱 심각하지만, 투자 자원의 부족으로 인해 BIM을 도입하기에는 힘든 실정이다. 따라서 이 논문에는 과도한 투자 없이 BIM의 효과를 얻을 수 있는 중소규모 사업장 대상 맞춤형 BIM 시스템 개발을 위한 연구를 수행하였다. 이를 Pseudo BIM(이하, 의사BIM)이라 정의하였다. 그리고 의사 BIM의 개념과 구축방법에 따라 PLIB Part 42, 건설정보분류체계 등을 활용하여 의사 BIM의 엔진 구조를 담당하는 데이터 사전 구축 방법을 제시하고 Pilot test를 실시하여 의사 BIM의 유효성을 검증하였다.
본 논문에서는 MR 영상에서 밝기값 분포와 기울기 정보를 이용한 전립선 자동 분할 기법을 제안한다. 첫째, 적응적 밝기값 프로파일과 다해상도 기법을 이용하는 활성형상모델을 통해 전립선 표면을 추출한다. 둘째, 표면 형상의 지역적 최적화로 인한 흘을 방지하기 위하여 기하학 정보를 이용한 흘 제거 기법을 수행한다. 셋째, 해부학적으로 변이가 큰 표면 형상은 2차원 기울기 정보를 이용하여 보정한다. 이때, 보정된 표면 형상은 한정된 정점의 개수로 산정되어 매끄럽게 표현되지 않기 때문에 표면재구성 및 평활화 기법을 이용하여 부드러운 형상으로 표현한다. 제안방법의 평가를 위하여 육안평가와 정확성 평가 그리고 수행시간을 측정하였다. 정확성 평가는 두 명의 임상전문의의 수동분할 결과와 자동분할 결과 간의 평균거리차이와 중복볼륨비율을 측정하였다. 실험 결과 평균거리차이는 0.3${\pm}$0.21mm 측정되었고, 중복볼륨 비율은 96.31${\pm}$2.71% 측정되었다. 20명의 환자 데이터에 대한 전체 수행시간은 평균 16초로 측정되었다.
BIM (Building Information Modeling)은 토목 구조물의 3차원 객체모델을 기반으로 기획 단계부터 설계, 시공 및 유지보수 단계에 이르기까지 대상 구조물에 관련된 모든 정보를 통합적으로 생성, 관리하는 기술이다. 현재 국내외의 다양한 건설 산업 분야에서는 건설 생산성 향상을 위하여 BIM 기술을 도입하여 활용하고 있다. 그러나 이러한 BIM 기술을 적용하여 효율적인 엔지니어링 업무를 수행하기 위해서는 무엇보다 참여 주체간의 협업 시스템이 필요하다. 따라서 본 논문에서는 토목 프로젝트 참여 주체의 요구사항을 분석하여 건설 프로젝트 관리를 위한 BIM 기반의 CPLM (Construction Project Lifecycle Management) 시스템을 설계, 개발하였다. CPLM 시스템은 건설 프로세스 단계에 따른 정보의 관리와 공유가 가능한 환경을 제공한다. 향후 CPLM 시스템을 실무에 도입함으로써 기존의 업무 프로세스를 개선하고 데이터를 효율적으로 관리할 수 있게 되어 의사결정에 도움을 줄 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.