• Title/Summary/Keyword: 3단형 과학 로켓

Search Result 28, Processing Time 0.017 seconds

KSR- III 추력벡터제어를 위한 유압-서보 김발엔진 구동시스템에 관한 연구

  • Lee, Hee-Joong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.141-146
    • /
    • 2002
  • During dynamic flight by propulsion of rocket engine, in the atmosphere, the attitude control of flight vehicle can be accomplished by the aerodynamic fin actuator. But, in the outer space, the method of TVC(Thrust Vector Control) is only depend on for it. There are many systems which were developed for TVC. In our research, among them we adopted gimbal engine actuation system which could control the vector of thrust by swivelling rocket engine connected by gimbal. There are electro-hydraulic, electro-mechanical and pneumatic system which can be used as gimbal engine actuation system, but the electro-hydraulic system that has high ratio of output power to mass is preferred for the high power system. In this note, we made a mathematical model of the electro-hydraulic gimbal engine actuation system for the TVC of KSR-III in detail and on the base of this model we performed a simulation study. And then, we verified the model by making a comparison between the simulation and the experiments on the real system.

  • PDF

Research and Development of KSR-III Apogee Kick Motor (KSR-III Apogee Kick Motor 연구 및 개발)

  • 조인현;오승협;강선일;황종선
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.40-49
    • /
    • 2001
  • The basic research on AKM(Apogee Kick Motor) for space launch vehicle was carried out. AKM which will be used as 3rd stage solid rocket motor in 3-stage Korean Sounding Rocket(III) has been developing. KM is a solid rocket motor using composite propellant based on HTPB and is composed of composite motor case and submerged nozzle. To develop KM rocket motor satisfing a given set of requirement, firstly the full-scale KM with diameter 520mm was designed, then sub-scale motors reduced about 60% were manufactured and tested. Full-scale ground firing test is accomplished two times.

  • PDF

Thruster Attitude Control System for the Ksr-3 (KSR-3 추격기 자세제어 시스템 개발)

  • Jeong,Ho-Rak;Jeon,Sang-Un;Choe,Hyeong-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.104-112
    • /
    • 2003
  • This paper introduces a thruster attitude control system for the KSR-III and addresses system configuration, design condition for several components and development systems. These systems were confirmed through environmental tests, compatibility tests with other sub-systems and are planned to launch by this year. After the launch test, it can be redesigned for optimal systems using post-analysis.

KM 추진제 개발 (I)

  • 최성한;박의용;조인현
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.26-26
    • /
    • 2000
  • KM(Kick Motor)는 항우연에서 주관하여 개발하고 있는 3단형 과학관측로켓(KSR-III)이다. 본 연구는 이 KM에 적용되는 추진제 개발로서 추진기관에서 요구하는 성능, 밀도, 연소특성, 기계적특성, 점화성, 추진제/라이너/EFDM 접착력을 달성하고, 장기저장시 추진제에 작용하는 온도, 중력등 하중에 대한 추진제의 내구성을 확인하는 수면예측시험을 통해 KM이 사용하는 기간중 요구성능을 발휘할 수 있는 추진제 개발을 목표로 하고 있다. 본 논문에서는 KM 추진제 개발중 1차적으로 추진기관 요구성능을 달성하기 위해서 추진제 성능분석을 통한 기본조성을 설정하고, 이 기간조성을 토대로 밀도, 연소특성, 기계적 특성, 추진제/라이너/EPDM 접착력 실험 결과등을 정리하였고, 추진제 성능을 확인하는데 일반적으로 널리 이용하는 있는 표준모타(ST-8)에 적용하여 이론적 성능분석 및 실제 연소시험을 실시하여 그 결과를 비교 분석하였다.

  • PDF

KSR-III 매니폴드의 추진제 분사균일성 해석

  • Cho, Won-Kook
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • A numerical analysis on the uniformity of propellant injection velocity of KSR-III has been carried out to give design improvements. Injector holes were approximated as porous media with the same pressure drop . The injection velocity is higher at the opposite side of the inlet for both LOX and fuel due to the static pressure rise in the stagnation region. Flow passages at the vertical circular plate in the LOX dome increase the uniformity of LOX injection. Little change was observed in the injection uniformity and pressure drop for the slanted LOX passage. Also provided were the O/ F ratio distributions from the oxidizer/ fuel injection velocity analysis.

  • PDF

Wing-Fuselage Joint Design Improvement Using Nonlinear Analysis Considering Contact (접촉을 갖는 날개-동체 조인트의 비선형 해석을 통한 설계 개선)

  • Kim, Gwang-Su;Yun, Se-Hyeon;Sim, Jae-Yeol;Lee, Yeong-Mu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.108-114
    • /
    • 2002
  • In this paper, nonlinear finite element analysis is performed to ensure structural safety and to suggest the design improvement of wing-to-fuselage joint of the KSR-III rocket. In the joint, wings are attached to fuselage by fitting wing attachment part into the groove on the fuselage frame, and load transfer between wing and fuselage frame is accomplished mainly throug the contact of two members as well as fastening bolts. The careful finite element modeling has been proposed for the purpose of analyzing problems with relatively complicated load path. The detailed bolt modeling is conducted and GAP elemets are used to simulate contact problem between joined members and bolts. The suggested design improvement is verified by structural testing and the analysis results are compared with test results.

PRODUCT10N OF KSR-III AIRGLOW PHOTOMETERS TO MEASURE MUV AIRGLOWS OF THE UPPER ATMOSPHERE ABOVE THE KOREAN PENINSULAR (한반도 상공의 고층대기 중간 자외선 대기광 측정을 위한 KSR-III 대기광도계 제작)

  • Oh, T.H.;Park, K.C.;Kim, Y.H.;Yi, Y.;Kim, J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.305-318
    • /
    • 2002
  • We have constructed two flight models of airglow photometer system (AGP) to be onboard Korea Sounding Rocket-III (KSR-III) for detection of MUV dayglow above the Korean peninsular. The AGP system is designed to detect dayglow emissions of OI 2972${\AA}$, $N_2$ VK(0,6) 2780${\AA}$, $N_2$ 2PG 3150${\AA}$ and background 3070${\AA}$ toward the horizon at altitudes between 100 km and 300 km. The AGP system consists of a photometer body, a baffle an electronic control unit and a battery unit. The MUV dayglow emissions enter through a narrow band interference filter and focusing lens of the photometer, which contains an ultraviolet sensitive photomultiplier tube. The photometer is equipped with an in-flight calibration light source on a circular plane that will rotate at the rocket's apogee. A bane tube is installed at the entry of the photometer in order to block strong scattering lights from the lower atmosphere. We have carried out laboratory measurements of sensitivity and in-flight calibration light source for the AGP flight models. Although absolute sensitivities of the AGP flight models could not be determined in the country, relative sensitivities among channels are well measured so that observation data during rocket flight in the future can be analyzed with confidence.

Study on the Insurance and Liability for Damage caused by Space Objects (우주사고와 손해배상)

  • Kim, Sun-Ihee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.19 no.1
    • /
    • pp.9-35
    • /
    • 2004
  • A launching State shall be absolutely liable to pay compensation for damage caused by its space object on the surface of the earth or to aircraft in flight. The compensation which the launching State shall be liable to pay for damage under "the Convention on International Liability for Damage caused by Space Objects" shall be determined in accordance with international law and the principles of justice and equity, in order to provide such reparation in respect of the damage as will restore the person, natural or juridical, State or international organisation on whose behalf the claim is presented to the condition which would have existed if the damage had not occurred. In the event of damage being caused elsewhere than on the surface of the earth to a space object of one launching State or to persons or property on board such a space object by a space object of another launching State, and of damage thereby being caused to a third State or to its natural or juridical persons, the first two States shall be jointly and severally liable to the third State, to the extent indicated by the following: If the damage has been caused to the third State on the surface of the earth or to aircraft in flight, their liability to the third State shall be absolute; If the damage has been caused to a space object of the third State or to persons or property on board that space object elsewhere than on the surface of the earth, their liability to the third State shall be based on the fault of either of the first two States or on the fault of persons for whom either is responsible. The Insurance requirements are satisfied for a launch or return authorised by a launch permit if the holder of the permit or authorisation is insured against any liability that the holder might incur to pay compensation for any damage to third parties that the launch or return causes; and the Commonwealth is insured against any liability that Commonwealth might incur, under the Liability Convention or otherwise under international law, to pay compensation for such damage. The liability for Damage caused by Space Objects should be regulated in detail in Korea.

  • PDF