• Title/Summary/Keyword: 3,4-dihydroxyphenyl acetic acid

Search Result 7, Processing Time 0.019 seconds

Radical Scavenging Hydroxyphenyl Ethanoic Acid Derivatives from a Marine-Derived Fungus

  • Li Xifeng;Kim Se-Kwon;Kang Jung-Sook;Choi Hong-Dae;Son Byeng-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.637-638
    • /
    • 2006
  • Bioassay-guided fractionation of an organic extract of the culture broth from an unidentified marine-derived fungus led to the isolation of a new metabolite, N-[2-(4-hydroxyphenyl) acetyl]formamide (1), along with four known polyketides, 4-hydroxyphenyl acetamide (2), 4-hydroxyphenyl acetic acid (3), 3,4-dihydroxyphenyl acetic acid (4), and N-[2-(4-hydroxyphenyl)ethenyl]formamide (5). The structures of 1-5 were elucidated by spectral data analyses. Among them, compounds 1, 4, and 5 exhibited significant radical scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl (DPPH) with $IC_{50}$ values of 8.4, 11.9, and $0.2{\mu}M$, respectively.

Anti-oxidant and Anti-inflammatory Effects of Rutin and Its Metabolites

  • Kim, Ji Hye;Park, Sang Hee;Beak, Eun Ji;Han, Chang Hee;Kang, Nam Joo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.3
    • /
    • pp.165-169
    • /
    • 2013
  • Rutin is one of the major flavonoids found in buckwheat (Fagopyrum esculentum Moench). While rutin is already known to exhibit anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. However, the health beneficial function of rutin metabolites is not well understood. In DPPH radical scavenging assays, the present study found that 3,4-dihydroxyphenyl acetic acid had the highest total anti-oxidant activity, followed by 3,4-dihydroxyphenylacetic acid, rutin, homovanillic acid, and 3-hydroxyphenyl acetic acid. Further, 3,4-dihydroxyphenylacetic acid strongly reduced LPS-induced IL-6 production in RAW 264.7 cells, compared with other metabolites. Therefore, these results suggest that rutin metabolites have potential to be utilized as food ingredients with anti-oxidant and anti-inflammatory activities.

  • PDF

The Optimum Conditions for the Simultaneous Determination of Neurotransmitters in Rat Brain Striatum by High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ECD를 이용한 흰쥐 뇌의 선조체 중 신경전달물질의 동시분석시 최적 조건)

  • Kang, Jong-Seong;Mun, Min-Seon;Shin, Hyung-Seon;Lee, Soon-Chul
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.215-220
    • /
    • 1995
  • A simple, efficient and sensitive method was described for the simultaneous determination of catecholamine, indoleamine and related metabolites from the homogenates of the rat brain striatum by HPLC-ECD. The optimum mobile phase on a reverse phase $C_{18}$ column was 35mM sodium acetate buffer(included 10mM citric acid, 0.13mM $Na_4EDTA$, 0.58mM SOS, pH3-4):MeOH=85:15. The column temperature was $30^{\circ}C$. Dopamine(DA), 3, 4-dihydroxyphenyl acetic acid(DOPAC), homovanilic acid(HVA), 5-hydroxyindole acetic acid(5-HIAA), serotonin(5-HT) and noradrenaline(NA) could be separated and analysed to very small amount. The detection limits of this method were 2~10pg per injection for all components. The effects of age and sex of rat on the contents of the catecholamines and their metabolites in rat brain striatum were studied. The levels of DA and 5-HT contents of the 7 week old female rats were higher than those of the 7 week old male rats. As the age of rat increases, the contents of DOPAC increased significantly.

  • PDF

Effects of Some Crude Drug Extracts on the Brain Neurotransmitters in the Ethanol-Treated Rats (수종의 생약 추출물이 에탄올 투여 흰쥐의 뇌 부위별 신경전달물질에 미치는 영향)

  • Linh, Pham-Tuan;Lee, Soon-Chul;Kim, Young-Ho;Hong, Seon-Pyo;Song, Chang-Woo;Kang, Jong-Seong
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.630-635
    • /
    • 2000
  • The concentration of neurotransmitters in rat brain was determined by HPLC-ECD (electrochemical detection) method and the effects of methanol extracts of some crude drugs, such as Polygala Radix, Myristicae Semen, Zizyphi Semen, Acori graminei Rhizoma, Visci Herba, Liriopsis Tuber, Myrrha on the concentration of neurotransmitters in the ethanol-treated rat brain were investigated. By the administration of ethanol, dopamine (DA), 3, 4-dihydroxyphenyl acetic acid (DOPAC) and serotonin (5-HT) levels in frontal cortex and 5-HT level in hippocampus were significantly increased compared with the neurotransmitter levels in the brain of saline-treated rats. The ${\gamma}$-aminobutyric acid (GABA) level in frontal cortex was decreased by the same treatment. There was a tendency that the DA level in frontal cortex and striatum of ethanol-treated rats were increased by the administration of crude drug extracts. Especially, Myrrha and Visci Herba significantly increased the DA level of frontal cortex in ethanol-treated rats, while they significantly decreased the 5-HT level in the same region of the brain. GABA level in striatum of ethanol-treated rats was significantly decreased by Myristicae Semen, Visci Herba and Myrrha. These results suggest that the tested crude drug extracts have selective interaction with neurotransmitters in specified region of central nervous system.

  • PDF

Potent whitening effects of rutin metabolites (루틴 대사체의 미백 효능)

  • Kim, Ji Hye;Kang, Nam Joo
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.607-612
    • /
    • 2015
  • The aim of this research was to investigate the whitening effects of rutin and rutin metabolites including 3,4-dihydroxyphenyl acetic acid (DHPAA), 3-hydroxyphenyl acetic acid (HPAA), 3,4-dihydroxytolene (DHT) and homovanillic acid (HVA). The potent whitening effect of rutin and rutin metabolites were determined by mushroom tyrosinase inhibition assay and expressed as the half maximal inhibitory concentration ($IC_{50}$) against tyrosinase activity in vitro. The HVA showed the highest inhibitory effect ($IC_{50}=37.10{\mu}M$) of tyrosinase activity, followed by DHPAA ($IC_{50}=45.87{\mu}M$), HPAA ($IC_{50}=50.96{\mu}M$), rutin ($IC_{50}=57.98{\mu}M$), and DHT ($IC_{50}=66.09{\mu}M$), respectively. To evaluate cell cytotoxicity, MTT assay was performed with JB6 P+ mouse epidermal cells and expressed as a relative percentage of untreated control. The results showed that rutin and rutin metabolites had no cytotoxic effects on JB6 P+ cells up to $100{\mu}M$ except for DHT (up to $50{\mu}M$). These results suggests that rutin metabolites may be utilized as a potential tyrosinase inhibitors and the whitening agents for the future.

Time-Course of [$^3H$]Spiperone Binding and Dopamine Metabolism in the Rat Striatum after Withdrawal from Haloperidol Ttreatment (Haloperidol 투여후 금단기간에 따른 백서 선조체의 [$^3H$]Spiperone 결합 및 Dopamine 대사물질의 변화)

  • Lee, Jung-Yong;Kong, Bo-Geum;Kim, Yong-Kwan;Jung, Chung;Kim, Sun-Hee;Kim, Young-Hoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.51-56
    • /
    • 1996
  • The effects of 3 week treatment with haloperidol(2mg/kg/day, i.p.) on dopamine(DA) D2 receptor and DA metabolism in rat striata were studied at various time points after withdrawal from the drug treatment. Striatal DA D2 receptors were characterized with the radioligand 0.5nM [$^3H$]Spiperone. Dopamine(DA), homovanillic acid(HVA), 3,4-dihydroxyphenyl acetic acid(DOPAC) in rat striatum were measured with the high performance liquid chromatography. Drug withdrawal for 1 week induced significant increase in the number of D2 receptor in striatum after withdrawal for 1 week(p<0.05), and then this change was restored to control level during the withdrawal time of 2 and 4 weeks. There was no difference in striatal concentrations of DA and its metabolites among the groups. In conclusion, one-week withdrawal from chronic haloperidol treatment induced DA D2 receptor supersensitivity in the striatum, and that was normalized rapidly. Though this adaptive change in DA receptors, it may not affect the metabolism of DA in striatum.

  • PDF