• Title/Summary/Keyword: 3)Internet of Things

Search Result 650, Processing Time 0.039 seconds

Analysis of transmission rate according to LoRaWAN communication distance (LoRaWAN Class B 통신 거리에 따른 전송율 분석)

  • Seo, Euiseong;Jang, Jongwook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.207-211
    • /
    • 2019
  • Research and development are underway to connect the network to all things in the world and to manage the objects through the Internet. The Internet of Things is expected to play an important role in building ecosystem of next generation mobile communication service. The most significant communication technology is LPWAN. In this paper, we analyze the performance according to each data transmission rate to reduce and manage resource waste by using many LPWAN nodes more efficiently in accordance with the demands of the times. The LPWAN communication technology used in this paper was designed based on LoRaWAN, a long-distance low-power wireless platform developed by Semtech, and analyzed by implementing a virtual IoT base using Network Simulator-3.

Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault (사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법)

  • Kim, Jin-Young;Seon, Joonho;Yoon, Sung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2022
  • In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.

The Communication Protocol Model for Semiconductor Equipment with Internet of Things (사물인터넷을 이용한 반도체 장비 통신 프로토콜 모델)

  • Kim, Doo Yong;Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.40-45
    • /
    • 2019
  • The smart factory has developed with the help of several technologies such as automation, artificial intelligence, big data, smart sensors and communication protocols. The Internet of things(IOT) among communication protocols has become the key factor for the seamless integration of various manufacturing equipment. Therefore, it is important that the IOT cooperate with the standards of communication protocols proposed by the SEMI in the semiconductor industry. In this paper, we suggest a novel reference model of the communication protocols for semiconductor equipment by introducing an IOT service layer. With the IOT service layer, we can use the functions and the additional services provided by the IOT standards that give the inter-operability between factory machines and host computers. We implement the standard of the communication protocols for semiconductor equipment with the IOT service layer by using ns3 simulator. It concludes that it is necessary to provide the platform for the IOT service layer to deploy efficiently the proposed reference model of the communication protocols.

A Real-Time Surveillance System for Vaccine Cold Chain Based o n Internet of Things Technology

  • Shao-jun Jiang;Zhi-lai Zhang;Wen-yan Song
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.394-406
    • /
    • 2023
  • In this study, a real-time surveillance system using Internet of Things technology is proposed for vaccine cold chains. This system fully visualizes vaccine transport and storage. It comprises a 4G gateway module, lowpower and low-cost wireless temperature and humidity collection module (WTHCM), cloud service software platform, and phone app. The WTHCM is installed in freezers or truck-mounted cold chain cabinets to collect the temperature and humidity information of the vaccine storage environment. It then transmits the collected data to a gateway module in the radiofrequency_physical layer (RF_PHY). The RF_PHY is an interface for calling the bottom 2.4-GHz transceiver, which can realize a more flexible communication mode. The gateway module can simultaneously receive data from multiple acquisition terminals, process the received data depending on the protocol, and transmit the collated data to the cloud server platform via 4G or Wi-Fi. The cloud server platform primarily provides data storage, chart views, short-message warnings, and other functions. The phone app is designed to help users view and print temperature and humidity data concerning the transportation and storage of vaccines anytime and anywhere. Thus, this system provides a new vaccine management model for ensuring the safety and reliability of vaccines to a greater extent.

Advanced ZigBee Baseband Processor with Variable Data Rates for Internet-of-things Applications

  • Hwang, Hyunsu;Jang, Soohyun;Lee, Seongjoo;Jung, Yunho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.56-64
    • /
    • 2017
  • In this paper, an advanced ZigBee (AZB) system for internet-of-things (IoT) applications is proposed which can support various data rates from 31.25 Kbps to 2 Mbps, and the implementation results of the AZB baseband processor are presented. Repetition coding for 32-chip direct-sequence spread spectrum (DSSS) symbol is applied for low rates under 250 Kbps to extend the coverage. Convolution coding, puncturing, and interleaving for non-DSSS symbol are performed for high rates from 500 Kbps to 2 Mbps for multi-media services. Simulation results show that the coverage increases at the rate of 51.8-77.3% for various environments compared with IEEE 802.15.4 ZigBee. AZB baseband processor was implemented in 180 nm CMOS process and total gate counts are 260K with the size of $5.8mm^2$.