• Title/Summary/Keyword: 2D-DLDA

Search Result 4, Processing Time 0.019 seconds

2D Direct LDA Algorithm for Face Recognition (얼굴 인식을 위한 2D DLDA 알고리즘)

  • Cho Dong-uk;Chang Un-dong;Kim Young-gil;Song Young-jun;Ahn Jae-hyeong;Kim Bong-hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1162-1166
    • /
    • 2005
  • A new low dimensional feature representation technique is presented in this paper. Linear discriminant analysis is a popular feature extraction method. However, in the case of high dimensional data, the computational difficulty and the small sample size problem are often encountered. In order to solve these problems, we propose two dimensional direct LDA algorithm, which directly extracts the image scatter matrix from 2D image and uses Direct LDA algorithm for face recognition. The ORL face database is used to evaluate the performance of the proposed method. The experimental results indicate that the performance of the proposed method is superior to DLDA.

Improved $(2D)^2$ DLDA for Face Recognition (얼굴 인식을 위한 개선된 $(2D)^2$ DLDA 알고리즘)

  • Cho, Dong-Uk;Chang, Un-Dong;Kim, Young-Gil;Kim, Kwan-Dong;Ahn, Jae-Hyeong;Kim, Bong-Hyun;Lee, Se-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.942-947
    • /
    • 2006
  • In this paper, a new feature representation technique called Improved 2-directional 2-dimensional direct linear discriminant analysis (Improved $(2D)^2$ DLDA) is proposed. In the case of face recognition, thesmall sample size problem and need for many coefficients are often encountered. In order to solve these problems, the proposed method uses the direct LDA and 2-directional image scatter matrix. Moreover the selection method of feature vector and the method of similarity measure are proposed. The ORL face database is used to evaluate the performance of the proposed method. The experimental results show that the proposed method obtains better recognition rate and requires lesser memory than the direct LDA.

Relevance-Weighted $(2D)^2$LDA Image Projection Technique for Face Recognition

  • Sanayha, Waiyawut;Rangsanseri, Yuttapong
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.438-447
    • /
    • 2009
  • In this paper, a novel image projection technique for face recognition application is proposed which is based on linear discriminant analysis (LDA) combined with the relevance-weighted (RW) method. The projection is performed through 2-directional and 2-dimensional LDA, or $(2D)^2$LDA, which simultaneously works in row and column directions to solve the small sample size problem. Moreover, a weighted discriminant hyperplane is used in the between-class scatter matrix, and an RW method is used in the within-class scatter matrix to weigh the information to resolve confusable data in these classes. This technique is called the relevance-weighted $(2D)^2$LDA, or RW$(2D)^2$LDA, which is used for a more accurate discriminant decision than that produced by the conventional LDA or 2DLDA. The proposed technique has been successfully tested on four face databases. Experimental results indicate that the proposed RW$(2D)^2$LDA algorithm is more computationally efficient than the conventional algorithms because it has fewer features and faster times. It can also improve performance and has a maximum recognition rate of over 97%.

Multimodal System by Data Fusion and Synergetic Neural Network

  • Son, Byung-Jun;Lee, Yill-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.157-163
    • /
    • 2005
  • In this paper, we present the multimodal system based on the fusion of two user-friendly biometric modalities: Iris and Face. In order to reach robust identification and verification we are going to combine two different biometric features. we specifically apply 2-D discrete wavelet transform to extract the feature sets of low dimensionality from iris and face. And then to obtain Reduced Joint Feature Vector(RJFV) from these feature sets, Direct Linear Discriminant Analysis (DLDA) is used in our multimodal system. In addition, the Synergetic Neural Network(SNN) is used to obtain matching score of the preprocessed data. This system can operate in two modes: to identify a particular person or to verify a person's claimed identity. Our results for both cases show that the proposed method leads to a reliable person authentication system.