• Title/Summary/Keyword: 2D vision

Search Result 619, Processing Time 0.023 seconds

A Study on the Stereo Vision System Design for the Displacement Estimation of Three-Dimensional Moving Object (3차원 이동물체의 변위평가를 위한 스테레오 비젼시스템 설계에 관한 연구)

  • 이주신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.12
    • /
    • pp.1002-1016
    • /
    • 1990
  • This paper described design and implementation of stereo vision system, and also, proposed method for displacement estimation of 3-D moving object using this system. The extraction of moving object is obtained by difference image algorithm. Geometrical position of 3-D moving object is calculated form the mapping of center area of two's 2-D object. 3-D coordinate position produced space depth, moving velociity, distance, moving track and proved displacement estimation of 3-D moving object.

  • PDF

3D Visualization and Work Status Analysis of Construction Site Objects

  • Junghoon Kim;Insoo Jeong;Seungmo Lim;Jeongbin Hwang;Seokho Chi
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.447-454
    • /
    • 2024
  • Construction site monitoring is pivotal for overseeing project progress to ensure that projects are completed as planned, within budget, and in compliance with applicable laws and safety standards. Additionally, it seeks to improve operational efficiency for better project execution. To achieve this, many researchers have utilized computer vision technologies to conduct automatic site monitoring and analyze the operational status of equipment. However, most existing studies estimate real-world 3D information (e.g., object tracking, work status analysis) based only on 2D pixel-based information of images. This approach presents a substantial challenge in the dynamic environments of construction sites, necessitating the manual recalibration of analytical rules and thresholds based on the specific placement and the field of view of cameras. To address these challenges, this study introduces a novel method for 3D visualization and status analysis of construction site objects using 3D reconstruction technology. This method enables the analysis of equipment's operational status by acquiring 3D spatial information of equipment from single-camera images, utilizing the Sam-Track model for object segmentation and the One-2-3-45 model for 3D reconstruction. The framework consists of three main processes: (i) single image-based 3D reconstruction, (ii) 3D visualization, and (iii) work status analysis. Experimental results from a construction site video demonstrated the method's feasibility and satisfactory performance, achieving high accuracy in status analysis for excavators (93.33%) and dump trucks (98.33%). This research provides a more consistent method for analyzing working status, making it suitable for practical field applications and offering new directions for research in vision-based 3D information analysis. Future studies will apply this method to longer videos and diverse construction sites, comparing its performance with existing 2D pixel-based methods.

Development of a Vision System for the Complete Inspection of CO2 Welding Equipment of Automotive Body Parts (자동차 차체부품 CO2용접설비 전수검사용 비전시스템 개발)

  • Ju-Young Kim;Min-Kyu Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.179-184
    • /
    • 2024
  • In the car industry, welding is a fundamental linking technique used for joining components, such as steel, molds, and automobile parts. However, accurate inspection is required to test the reliability of the welding components. In this study, we investigate the detection of weld beads using 2D image processing in an automatic recognition system. The sample image is obtained using a 2D vision camera embedded in a lighting system, from where a portion of the bead is successfully extracted after image processing. In this process, the soot removal algorithm plays an important role in accurate weld bead detection, and adopts adaptive local gamma correction and gray color coordinates. Using this automatic recognition system, geometric parameters of the weld bead, such as its length, width, angle, and defect size can also be defined. Finally, on comparing the obtained data with the industrial standards, we can determine whether the weld bead is at an acceptable level or not.

Development of Automation Technology for Structural Members Quantity Calculation through 2D Drawing Recognition (2D 도면 인식을 통한 부재 물량 산출 자동화 기술 개발)

  • Sunwoo, Hyo-Bin;Choi, Go-Hoon;Heo, Seok-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.227-228
    • /
    • 2022
  • In order to achieve the goal of cost management, which is one of the three major management goals of building production, this paper introduces an approximate cost estimating automation technology in the design stage as the importance of predicting construction costs increases. BIM is used for accurate estimating, and the quantity of structural members and finishing materials is calculated by creating a 3D model of the actual building. However, only 2D basic design drawings are provided when making an estimating. Therefore, for accurate quantity calculation, digitization of 2D drawings is required. Therefore, this research calculates the quantity of concrete structural members by calculating the area for the recognition area through 2D drawing recognition technology incorporating computer vision. It is judged that the development technology of this research can be used as an important decision-making tool when predicting the construction cost in the design stage. In addition, it is expected that 3D modeling automation and 3D structural analysis will be possible through the digitization of 2D drawings.

  • PDF

A Platform-Based SoC Design for Real-Time Stereo Vision

  • Yi, Jong-Su;Park, Jae-Hwa;Kim, Jun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.212-218
    • /
    • 2012
  • A stereo vision is able to build three-dimensional maps of its environment. It can provide much more complete information than a 2D image based vision but has to process, at least, that much more data. In the past decade, real-time stereo has become a reality. Some solutions are based on reconfigurable hardware and others rely on specialized hardware. However, they are designed for their own specific applications and are difficult to extend their functionalities. This paper describes a vision system based on a System on a Chip (SoC) platform. A real-time stereo image correlator is implemented using Sum of Absolute Difference (SAD) algorithm and is integrated into the vision system using AMBA bus protocol. Since the system is designed on a pre-verified platform it can be easily extended in its functionality increasing design productivity. Simulation results show that the vision system is suitable for various real-time applications.

An implementation of 2D/3D Complex Optical System and its Algorithm for High Speed, Precision Solder Paste Vision Inspection (솔더 페이스트의 고속, 고정밀 검사를 위한 이차원/삼차원 복합 광학계 및 알고리즘 구현)

  • 조상현;최흥문
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.139-146
    • /
    • 2004
  • A 2D/3D complex optical system and its vision inspection algerian is proposed and implemented as a single probe system for high speed, precise vision inspection of the solder pastes. One pass un length labeling algorithm is proposed instead of the conventional two pass labeling algorithm for fast extraction of the 2D shape of the solder paste image from the recent line-scan camera as well as the conventional area-scan camera, and the optical probe path generation is also proposed for the efficient 2D/3D inspection. The Moire interferometry-based phase shift algerian and its optical system implementation is introduced, instead of the conventional laser slit-beam method, for the high precision 3D vision inspection. All of the time-critical algorithms are MMX SIMD parallel-coded for further speedup. The proposed system is implemented for simultaneous 2D/3D inspection of 10mm${\times}$10mm FOV with resolutions of 10 ${\mu}{\textrm}{m}$ for both x, y axis and 1 ${\mu}{\textrm}{m}$ for z axis. Experiments conducted on several nBs show that the 2D/3D inspection of an FOV, excluding an image capturing, results in high speed of about 0.011sec/0.01sec, respectively, after image capturing, with $\pm$1${\mu}{\textrm}{m}$ height accuracy.

Changes of Refractive Correction Value with Different Age Group: A Case for Myopia Control Lens, Single Vision Lens and Reverse Geometry Contact Lens (Myopia Control Lens, Single Vision Lens, Reverse Geometry Contact Lens의 연령에 따른 굴절교정상태 변화에 대한 추적 연구)

  • Yoon, Min-Hwa
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.75-84
    • /
    • 2013
  • Purpose: Changes of refractive correction value in different age group were investigated. Regarding the inhibitive effects against myopia progression after wearing reverse geometry contact lenses and myopia control lenses (MC lenses), the effects after wearing single vision lenses were compared. Methods: We organized children between the ages of six and fifteen into three groups by age, and distributed fifty-seven reverse geometry contact lenses, fifty-six MC lenses and seventy-eight single vision lenses among them to be worn. Group 1 consisted of children aged ten and under, Group 2 consisted of children between the ages of eleven and fifteen, and Group 3 represents all of the study participants. The aim of this study was to learn the inhibitive effects against myopia progression attained by changes of refractive correction value and to verify their statistical significance at twelve months and under, thirteen to twenty-four months and twenty-five to thirty-six months. Results: Changes of refractive correction value by each length of use in Group 3 were as follows. For the age group of under twelve months, participants using the reverse geometric contact lens showed no change, while those using the MC or single vision lens had significant changes (P<0.05) of $-0.36{\pm}0.10$ D and $-0.67{\pm}0.52$ D, respectively. Users of all three lens types displayed significant change (P<0.05), in the age group of between thirteen and twenty-four months, of $0.18{\pm}0.49$ D, $0.60{\pm}0.42$ D and $1.37{\pm}0.72$ D for users of the reverse geometry contact lens, the MC lens and the single vision lens, respectively. There were significant changes (P<0.05) of $0.29{\pm}0.61$ D, $0.93{\pm}0.57$ D and $1.72{\pm}0.78$ in the same respective order as the above in the age group of twenty-five to thirty-six months. Refractive correction value showed changes with different age group. Group 1 displayed significant changes (P<0.05) of $0.29{\pm}0.73$ D, $1.07{\pm}0.59$ D and $1.75{\pm}0.74$ D for users of the reverse geometry contact lens, MC lens and single vision lens, respectively, up to thirty-six months of lens wearing; Group 2, also up to thirty-six months, displayed significant changes (P<0.05) of $0.28{\pm}0.42$ D, $0.75{\pm}0.49$ D and $1.70{\pm}0.84$ D in the same respective order, and changes in refractive correction for the age group under ten years was significantly greater (P<0.05) for the age group of eleven and older. Conclusions: The results found in this study demonstrate that there were no changes of refractive correction value for the case of wearing reversing geometry contact lens up to twelve month or less. MC lens showed less changes in variations of visual acuity for all users which might be resulted in inhibiting progression of myoptia. When both reverse geometry contact lens and the MC lens are wearing for the period from 13 to 36 month, both lens showed less changes in variation of visual acuity for all users. The results suggested that the less changes in variation of visual acuity of both lens had an effect on inhibiting progression of myopia.

Human Visual Ability Enhancement Technology Trends and Development Prospects (인간 시각 능력 향상 기술 동향 및 발전 전망)

  • C.Y. Jeong;M.S. Kim;S.R. Yun;K.D. Moon;H.C. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.63-72
    • /
    • 2024
  • Vision is a process in which the brain and eyes collaborate to enable sight by analyzing light reflected from objects. Vision is also the most crucial among the five basic human senses for recognizing environments. The eyes contain 70% of the sensory receptors in the body, and 90% of the information processed by the brain is visual. Currently, approximately 2.2 billion people worldwide have vision impairments. A recent study estimated that the global economic productivity losses due to vision impairment and blindness amount to approximately $410 billion. Additionally, as people age, their ability to control their vision declines, leading to presbyopia, which typically starts in their 40s. Since people heavily rely on vision in their daily lives, vision problems can significantly reduce the quality of life. Approaches to solving vision problems can be broadly categorized into visual prostheses requiring surgery, sensory substitution based on neuroplasticity, and smart glasses for presbyopia. We present the trends and future development prospects for three key areas of research: visual prostheses, visual substitution technologies, and smart glasses technologies. These areas are being explored with the aim of addressing visual impairments and blindness.

Development of the Noise Elimination Algorithm of Stereo-Vision Images for 3D Terrain Modeling (지반형상 3차원 모델링을 위한 스테레오 비전 영상의 노이즈 제거 알고리즘 개발)

  • Yoo, Hyun-Seok;Kim, Young-Suk;Han, Seung-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • For developing an Automation equipment in construction, it is a key issue to develop 3D modeling technology which can be used for automatically recognizing environmental objects. Recently, for the development of "Intelligent Excavating System(IES), a research developing the real-time 3D terrain modeling technology has been implemented from 2006 in Korea and a stereo vision system is selected as the optimum technology. However, as a result of performance tests implemented in various earth moving environment, the 3D images obtained by stereo vision included considerable noise. Therefore, in this study, for getting rid of the noise which is necessarily generated in stereo image matching, the noise elimination algorithm of stereo-vision images for 3D terrain modeling was developed. The consequence of this study is expected to be applicable in developing an automation equipments which are used in field environment.

A Study of Comparison Between Refractive Errors by Fixation Distance Variation with N-vision(open-view type) Auto-refractor and Refractive Error with Canon(Internal Fixation Target Type) Auto-refractor (개방형 자동굴절검사기의 주시거리에 따른 굴절이상도와 가상주시형 자동굴절 검사기의 굴절이상도와의 비교 연구)

  • Kim, Jae-Do;Kim, Tae-Hyun;Jeon, In-Chul
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.433-438
    • /
    • 2011
  • Purpose: To investigate the proper distance from patient to target when measuring refractive error using open view target type auto-refractor(OVTAR), it was compared refractive errors between by OVTAR using N-vision-K5001 auto-refractor and internal fixation target type auto-refractor(IFTAR) using Canon auto-refractor. Methods: 21 subjects(42 eyes) aged 22.2(${\pm}$3.4) years old who had over 1.0 of corrected visual acuity and no ocular disease were participated for this study. Noncycloplegic measurements of refractive error were performed using a IFTAR(RK-F1, Canon, Japan) and an OVTAR(N-vision-K5001, Shin-nippon, Japan). The distances from subjects to targets in using the open the view target type auto-refractor were 1 m, 3 m, 4 m and 6 m. The refractive errors were compared between by IFTAR and by 1 m, 3 m, 4 m and 6 m target distances respectively using OVTAR. Results: At 1 m fixation distance the mean of refractive errors for total subjects was not significantly different between by OVTAR(-2.75${\pm}$1.84 D) and by IFTAR(-2.95${\pm}$2.04 D)(p=0.06). However at 3, 4 and 6 m fixation distance refractive errors by OVTAR were significantly lower myopic refractive errors than by IFTAR(p<0.05). Conclusions: The distance from subject to fixation target is needed over 3 m for the measurement of refractive error using OVTAR even not to 5~6 m distance.