• Title/Summary/Keyword: 2D transfer function

Search Result 199, Processing Time 0.031 seconds

Auditory Spatial Arrangement of Object's Position in Virtual and Augmented Environment (가상환경에서의 위치정보 제시를 위한 청각적 공간배열)

  • Lee, Ju-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.326-333
    • /
    • 2011
  • In the present study, we measured the performance (accuracy and reaction time) of the user in the virtual environment with see-through Head-Mounted Display system that includes 3D sound generated through Head-Related Transfer Function (HRTF) to investigate the feasibility of auditory display for a certain object's spatial information. To sum up the results of two experiments, when presenting location information of the object with 3D sound, it is desirable that information arrangement from the user should be an orthogonal pattern which is located with right angle, not a diagonal pattern. Like these results propose that spatial information presentation with 3D sound make the optimal object arrangement of virtual environment possible.

Transfer Force Characteristics of Seedling Bed Transfer Equipment Using Pneumatic Cylinder for Automation of Plant Factory (식물공장 자동화를 위한 공압 실린더를 이용한 육묘베드 이송장치의 이송력 특성)

  • Min, Young-Bong;Park, Sang-Min;Lee, Gong-In;Kim, Dong-Ouk;Kang, Dong-Hyun;Moon, Sung-Dong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.155-165
    • /
    • 2012
  • This study was performed to offer the data for design of the seedling bed transfer equipment to make the automation of working process in a plant factory. The seedling bed transfer equipment pushing the seedling bed with bearing wheels on the rail for interconnecting each working process by a pneumatic cylinder was made and examined. The examined transfer force to push the seedling bed with a weight of 178.9 N by the pneumatic cylinder with length of 60 cm and section area of 5 $cm^2$ was measured by experiments. The examined transfer forces was compared with theoretical ones calculated by the theoretical formula derived from dynamic system analysis according to the number of the seedling bed and pushing speed of the pneumatic cylinder head at no load. The transfer function of the equipment with the input variable as the pushing speed $V_{h0}$(m/s) and the output variable as the transfer force f(t)(N) was represented as $F(s)=(V_{h0}/k)(s+B/M)/(s(s^2+Bs/M+1/(kM))$ where M(kg), k(m/N) and B(Ns/m) are the mass of the bed, the compression coefficient of the pneumatic cylinder and the dynamic friction coefficient between the seedling bed and the rail, respectively. The examined transfer force curves and the theoretical ones were represented similar wave forms as to use the theoretical formular to design the device for the seedling bed transfer. The condition of no vibration of the transfer force curve was $kB^2>4M$. The condition of transferring the bed by the repeatable impact and vibration force according to difference of transfer distance of the pneumatic cylinder head from that of the bed was as $Ce^{-\frac{3{\pi}D}{2\omega}}<-1$, where ${\omega}=\sqrt{\frac{1}{kM}-\frac{B^2}{4M^2}}$, $C=\{\frac{\frac{B}{2M}-\frac{1}{kB}}{\omega}\}$, $D=\frac{B}{2M}$. The examined mean peak transfer force represented 4 times of the stead state transfer force. Therefore it seemed that the transfer force of the pneumatic cylinder required for design of the push device was 4Bv where v is the pushing speed.

Hydrodynamic and Heat Transfer Studies in Riser System for Waste Heat Recovery using Chalcopyrite

  • Popuri, Ashok Kumar;Garimella, Prabhakar
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.252-260
    • /
    • 2018
  • Energy, a critical input, is to be efficiently managed via waste heat recovery and energy reuse for the economic viability of a process industry. In particular, cement manufacture demands a huge quantum of energy, for the necessary reactions. Huge amounts of hot effluent gases are generated. Energy recovery from these waste gases is an area that is of contemporary research interest. Now, about 75% of total heat recovery takes place in the riser of the suspension pre-heater system. This article deals with the hydrodynamic and heat transfer aspects of riser typically used in the cement industry. An experimental apparatus was designed and fabricated with provision for the measurement of gas pressure and solid temperatures at different heights of the riser. The system studied was air - chalcopyrite taken in different particle sizes. Acceleration length ($L_A$) determined at different parametric levels was fitted to an empirical correlation: $L_A/d_t=4.91902(d_p/d_t)^{0.10058}(w_s/w_g)^{-0.11691}(u_g{\mu}_g/d_t^2g{\rho}_g)^{0.28574}({\rho}_p/{\rho}_g)^{0.42484}$. An empirical model was developed for Nusselt number as a function of Reynolds and Prandtl numbers using regression analysis: $Nu=0.40969(Re_p)^{0.99953}(Pr)^{0.03569}$.

Energy Transfer and Cross-Relaxation in $Tb^{3+}$-doped Borosilicate Glasses ($Tb^{3+}$를 첨가한 Borosilicate 유리속에서 일어나는 에너지 전달과 Cross-Relaxation)

  • 김중환;문병기;오학태;김학수;윤수인;서효진;설정식
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.149-154
    • /
    • 1990
  • Energy transfer in $Tb^{3+}$-doped borosilicate glasses has been studied by the analysis of fluorescence intensities and lifetimes of $^5D_3$ and $^5D_4$ states as a function of Tb3+ concentration. It is shown that as the $Tb^{3+}$ concentration is increased the cross-relaxation produces high population of the $^5D_4$ state at the expense of $^5D_3$. It is also found that this interaction is predominantly dipole-dipole transition with critical distance of 13 A. The critical distance for energy transfer $^5D_4$$^5D_4$ which is responsible for the quenching of 5D4 emission at high concentratron of Tb3+ ions is 4.5 A.

  • PDF

Fabrication and Characterization of High Temperature in-situ Ramp-edge Type Josephson Junction (고온초전도체 in-situ ramp-edge 형태의 조셉슨 접합 제작 및 특성)

  • Hur, Yun-Sung;Kim, Jin-Tae;Hwang, Yun-Seok;Lee, Sun-Gul;Park, Gwang-Seo;Kim, In-Seon;Park, Yong-Ki;Park, Jong-Chul
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.263-267
    • /
    • 1998
  • In this study, we have fabricated in-situ multilayer $YBa_2Cu_3O_{7-\delta}$/$SrTiO_{3}$/$YBa_2Cu_3O_{7-\delta}$ ramp edge type junctions by using a metal mask and pulsed laser deposition method and studied the junction properties. The junctions showed RSJ-like I-V characteristics. The normal state junction resistance R, of $18 \omega$ was nearly constant with temperature. The dc-SQUID sensors fabricated with the junctions show a sensitivity that transfer function dV/$d\Phi$)~$22\mu$V/$\Phi_{0}$, indicating that the in-situ ramp edge type junction is potentially useful for sensor application.

  • PDF

3D simulation of Heat transfer in MEMS-based microchannel (MEMS 로 제작된 마이크로 채널에서의 3 차원 열전달 해석)

  • Choi, Chi-Woong;Huh, Cheol;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1870-1875
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 $kg/m^2s$. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux.

  • PDF

The Characteristics of Convective Heat Transfer in Non Boiling Vertical Downard Flow (비비등 수직 하향 유동의 대류 열전달 특성)

  • Lee, D.S.;Kim, J.G.;Yang, H.J.;Oh, Y.K.;Cha, K.O.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.118-123
    • /
    • 2000
  • This experimental study was conducted to figure out the characteristics of convective heat transfer in non boiling vertical downward flow with polymer additives. This experiment was studied in 26mm diameter, 800mm heating length and $1{\times}10^5W/m^2$ heat flux. The polymer concentration ranged from 0PPM to 500PPM with corresponding from Reynolds number $3.3{\times}10^4$ to $6.8{\times}10^4$ in non boiling vertical downward flow. Experimental results show that the characteristics of convective heat transfer was a strong function of polymer concentration and it has decreased with increasing the polymer concentration in non boiling vertical downward flow.

  • PDF

A Study on the Development of Load Transfer Curves of the Driven Steel Pipe Piles by Soil (타입강관말뚝의 토질별 하중전이곡선 도출에 관한 연구)

  • Lim, Jong-Seok;Choi, Yong-Kyu;Sim, Jong-Sun;Park, Jong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.29-43
    • /
    • 2009
  • As computational technologies have been developed, the load transfer analysis method using load transfer curves is widely performed. Now the load transfer analysis methods are widely used in our country. But most of the curves using in the analysis have been developed in foreign countries. In this study we gathered the data of in situ pile load tests on domestic nine sites in order to derive load transfer curves of driven steel pipe piles. Then we derived average lines of $f/f_{max}$-w/D curves for sandy and clayey soils respectively, which are expressed by hyperbolic function. And the results using these curves and the results using TZPile 2.0 (Analysis program of pile) were compared and analyzed with the results of pile load tests on domestic 3 sites in order to ascertain the applicability of the curves. The results show that the load-settlement relations using the curves in this study are more similar to the measured data and more conservative than those using TZPile 2.0.

Enhancement of the 3D Sound's Performance using Perceptual Characteristics and Loudness (지각 특성 및 라우드니스를 이용한 입체음향의 성능 개선)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.846-860
    • /
    • 2011
  • The binaural auditory system of human has ability to differentiate the direction and the distance of the sound sources by using the information which are inter-aural intensity difference(IID), inter-aural time difference(ITD) and/or the spectral shape difference(SSD). These information is generated from the acoustical transfer of a sound source to pinna, the outer ears. We can create a virtual sound system using the information which is called Head related transfer function(HRTF). However the performance of 3D sound is not always satisfactory because of non-individual characteristics of the HRTF. In this paper, we propose the algorithm that uses human's auditory characteristics for accurate perception. To achieve this, excitation energy of HRTF, global masking threshold and loudness are applied to the proposed algorithm. Informal listening test shows that the proposed method improves the sound localization characteristics much better than conventional methods.

Whitening effect of novel peptide mixture by regulating melanosome biogenesis, transfer and degradation

  • Lee, Eung-Ji;Kim, Jandi;Jeong, Min Kyeong;Lee, Young Min;Chung, Yong Ji;Kim, Eun Mi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2021
  • Peptides are short chain of amino acids linked by peptide bonds. They are widely used as effective and biocompatible active ingredients in cosmetic industry. In this study, we developed novel peptide mixture and identified its anti-pigmentation effect on melanocytes and keratinocytes. Our results revealed that peptide mixture inhibited melanosome biogenesis through the regulation of microphthalmia-associated transcription factor, a key factor of melanogenesis in melanocytes. And we observed that peptide mixture inhibited melanosome uptake through the reduction of protease-activated receptor 2, a phagocytosis-related receptor in keratinocytes. Furthermore, peptide mixture activated autophagy system resulting in degradation of transferred melanosomes in keratinocytes. The anti-pigmentation effect of multi-targeting peptide mixture was assessed in a human skin equivalent model (MelanoDerm). Melanin contents in epidermal layer were significantly decreased by topical treatment of peptide mixture, suggesting that it can be applied as a novel cosmetics material having a whitening function.