• Title/Summary/Keyword: 2D solid

Search Result 1,365, Processing Time 0.03 seconds

The Evaluation Technique of Surface Region using Backward-Radiated Ultrasound (후방 복사된 초음파를 이용한 표면 지역의 평가 기술)

  • Kwon, S.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.4
    • /
    • pp.241-250
    • /
    • 1997
  • The velocity dispersion of surface acoustical wave(SAW) of Si layer/mesh Au/Si substrate was measured by the frequency analysis technique of backward radiation at liquid/solid interface. The difference of backward radiation patterns depending on used transducers (2, 5, 10MHz) confirmed that the backward radiation phenomenon was caused by the energy radiation from SAW generated in surface region. An ultrasonic goniometer was constructed to measure continuously the angular dependence of backscattered intensity. The angular dependences of backward radiation(5MHz) were measured for Ni layer/Al substrate specimens that were bonded by epoxy involving different content of Cu powder. It was known that the width and pattern of backward radiation had informations such as the velocity dispersion, bonding quality and structure of surface region.

  • PDF

Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design

  • Ibrahimbegovic, Adnan;Boujelben, Abir
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.233-254
    • /
    • 2018
  • In order to reduce the dependency on fossil fuels, a policy to increase the production capacity of wind turbine is set up. This can be achieved with increasing the dimensions of offshore wind turbine blades. However, this increase in size implies serious problems of stability and durability. Considering the cost of large turbines and financial consequences of their premature failure, it is imperative to carry out numerical simulations over long periods. Here, an energy-conserving time-stepping scheme is proposed in order to ensure the satisfying computation of long-term response. The proposed scheme is implemented for three-dimensional solid based on Biot strain measures, which is used for modeling flexible blades. The simulations are performed at full spatial scale. For reliable design process, the wind loads should be represented as realistically as possible, including the fluid-structure interaction (FSI) dynamic effects on wind turbine blades. However, full-scale 3D FSI simulations for long-term wind loading remain of prohibitive computation cost. Thus, the model to quantify the wind loads proposed here is a simple, but not too simple to be representative for preliminary design studies.

A Study on the Gold Film Coated on the Ancient Gilt Bronze (고대 금동유물의 금도금(金鍍金) 피막(被膜)에 관한 연구)

  • Lim, S.K.;Kang, S.G.
    • Journal of Conservation Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.60-79
    • /
    • 1992
  • In relation to the scientific conservation treatment of ancient gilt bronze, the gold film coated on the bronze excavated from Hwangnam Great Tomb of Old Silla Kingdom(A. D. 5C) was studied in the view of coating technology and metallurgy of bronze. The uniform and dense gold film containing $2.44\sim12.40%$ of Hg with the thickness of $5.99\sim12.97{\mu}m$ was found to be coated on the bronze objects by amalgam coating method. On silver objects, the film with the thickness of $19.96{\mu}m$ was coated also continously and uniformly with gold by the same method. The bronze objects was fabricated by forging technique and contained almost $4.7\sim11.5%$ of Pb. Its microstructure was $\alpha-phase$ solid solution including Pb segregation in the matrix. The amount of $0.4\sim2.0%$ Zn was added in the bronze for the purpose of easy fabricating of Cu alloy. Based on the data studied, the gold film on bronze sample was reproduced by amalgam coating method and compared with the ancient gold film.

  • PDF

Roles of Glutathione Reductase and $\gamma$-Glutamylcysteine Synthetase in Candida albicans

  • Baek, Yong-Un;Yim, Hyung-Soon;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.61-61
    • /
    • 2003
  • We have cloned the CGR1 gene encoding glutathione reductase (GR) which catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) from Candida albicans. The cgr1/cgr1 mutants were not viable when CaMAL2 promoter repressed the CGR1 expression. The growth of the mutants could be partially overcome by thiol compounds such as GSH, dithiothreitol, cysteine, N-acetylcysteine and GSSG. Interestingly, C. albicans with CGR1 overexpressed showed defective hyphal growth on solid medium and attenuated virulence. We have also cloned the GCS1 gene encoding ${\gamma}$-glutamylcysteine synthetase which catalyzes the first step of glutathione biosynthesis. The gcs1/gcs1 mutants were nonviable in minimal defined medium. The growth of the mutants could be resumed by supplementing with GSH, GSSG and ${\gamma}$-glutamylcysteine in the medium. The mutants had increased intracellular D-erythroascorbic acid level up to 2.25-fold when transferred to GSH-free medium. When the mutants were depleted of GSH, they showed typical markers of apoptosis. In conclusion, these results suggest that glutathione is an essential metabolite, and involved in hyphal growth, virulence and apoptosis in C. albicans.

  • PDF

Ignition Transient Investigation of Rocket Motor

  • Chang, Suk-Tae;Sam M. Han;John C. Chai
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.45-54
    • /
    • 2000
  • Ignition transient is a. very rapid process lasting only in the order of 100 milliseconds and therefore it is difficult to measure all relevant ballistic properties. Numerical simulation is thus useful to quantify some of these hard to measure flow and ballistic properties. One-dimensional model was employed to study the effects of aging using simplified aging scenarios for both N-H sustainer and booster motors. Also the effects of newly designed igniter on the ignition of N-H sustainer was simulated. Radiation effects could be significant in terms of energy flux increase to the propellant surface and the energy exchange between the combustion gas itself. One dimension implementation of radiation showed significant effects for rear-mounted igniter. Implementation of radiation effects into 2-D axi-symmetric numerical model was completed and its effects on the N-H sustainer were examined. To have a reliable prediction of computer model on ignition transient, accurate chemical property data on the propellant and igniter gas are required. It was found that such property data on aged N-H motors are not available. Chemical aging model can be used to predict to some degree of accuracy effects of aging on chemical and mechanical properties. Such a model was developed, albeit 2-dimensional, to study migration of moisture through a representative solid rocket motor configuration.

  • PDF

Photoluminescence Characteristic of Gallate-Based Red Emitting Phosphors with High Color Purity (색순도가 우수한 갈륨 산화물계 적색 형광체의 광발광 특성)

  • Kim, Kyoung-Un;Choi, Sung-Ho;Jung, Ha-Kyun;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.159-162
    • /
    • 2008
  • $Eu^{3+}$-activated $R_3GaO_6$ (R = Y, Gd) phosphors were prepared in a conventional solid-state reaction and their optical properties were investigated. These compounds exhibit strong red emission under light excitation at 254 nm. The emission spectra are dominated by peaks appearing around 610-630 nm that are induced by the electric dipole transition of $^5D_0\;{\rightarrow}\;^7F_2$ of $Eu^{3+}$. In addition, the appropriate CIE (Commission Internationale de l'clairage) chromaticity coordinates, (x = 0.656, y = 0.336) for $Y_3GaO_6$ and (x = 0.655, y = 0.334) for $Gd_3GaO_6$, become closer to the NTSC (National Television System Committee) standard values. With the optimized activator concentrations, the maximum emission brightness is approximately 80% of $Y_2O_3$:$Eu^{3+}$ typical red-emitting phosphor with improved color purity under an excitation condition of 254 nm.

Physicochemical Properties and Antioxidant Activity of Commercial Tomato Ketchup (시판 토마토케첩의 이화학적 특성 및 항산화활성)

  • Chung, Hai-Jung
    • Journal of the Korean Society of Food Culture
    • /
    • v.30 no.6
    • /
    • pp.790-796
    • /
    • 2015
  • The objective of this study was to investigate the physicochemical properties and antioxidant activities of seven (A, B, C, D, E, F, G) commercial ketchups marketed in Korea. The 70% ethanol extracts were prepared and evaluated for total phenolic content, DPPH and ABTS radical scavenging activities, and metal chelating effect. pH ranged from 3.64 to 3.94, and soluble solid and reducing sugar contents of samples were 2.21~3.51oBrix and 4.78~13.45%, respectively. Salinity of samples was in the range of 1.79 to 3.21%, and sample G showed the lowest salinity. The lightness, redness, and yellowness of the Hunter color system of samples were 15.42~19.94, 18.55~23.98, and 20.87~24.34, respectively. The phenolic contents ranged from 1.37 to 2.60 mg GAE (gallic acid equivalents)/g, with samples F and G exhibiting the highest contents. Antioxidant activity determined based on DPPH and ABTS radical scavenging activities, and metal chelating effects were 45.10~90.87, 55.35~92.53, and 71.10~92.20%, respectively, at a concentration of 200 mg/mL. Samples A and G showed higher antioxidant activity than other samples. There were positive correlations between phenolic contents and antioxidant activity, suggesting that phenolic compounds are the major contributors to antioxidant activity.

Reactivity of Biogenic Manganese Oxide for Metal Sequestration and Photochemistry: Computational Solid State Physics Study (전산 고체물리를 이용한 바이오 산화망간 광물의 금속흡착과 광화학 반응도의 이해)

  • Kwon, Ki-Deok D.;Sposito, Garrison
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

Characterization of a-C/B:H thin films for KSTAR boronization

  • Sun, Jong-Ho;Hong, Suk-Ho;Woo, Hyun-Jong;Park, Eun-Kyong;Kim, Hye-Ran;Chung, Kyu-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.414-414
    • /
    • 2010
  • KSTAR vacuum vessel has been boronized by carborane ($C_2B_{10}H_{12}$) to reduce various kinds of impurities including carbon and oxygen from the wall, since carborane is solid, non-toxic, non-explosive and is easily evaporated, while diborane ($B_2D_6$) is toxic and explosive. To find the best wall condition for the removal of contaminants before application to KSTAR, various amounts (0.3g, 0.5g, 1g) of carborane are tested in a test chamber, where filament discharge was generated in the mixture of helium and carborane with the same KSTAR target pressure (~ 5 mTorr) from base pressure (${\sim}10^-7\;Torr$). Discharge is performed by a pulse sequence mode with 3 second power on and 5 second power off. Deposited films of a-C/B:H are characterized by ellipsometery, AES and XPS, and are compared with those of KSTAR.

  • PDF

Hydrogen Evolution from Biological Protein Photosystem I and Semiconductor BiVO4 Driven by Z-Schematic Electron Transfer

  • Shin, Seonae;Kim, Younghye;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.251.2-251.2
    • /
    • 2013
  • Natural photosynthesis utilizes two proteins, photosystem I and photosystem II, to efficiently oxidize water and reduce NADP+ to NADPH. Artificial photosynthesis which mimics this process achieve water splitting through a two-step Z-schematic water splitting process using man-made synthetic materials for hydrogen fuel production. In this study, Z-scheme system was achieved from the hybrid materials which composed of hydrogen production part as photosystem I protein and water oxidizing part as semiconductor BiVO4. Utilizing photosystem I as the hydrogen evolving part overcomes the problems of existing hydrogen evolving p-type semiconductors such as water instability, expensive cost, few available choices and poor red light (>600 nm) absorbance. Some problems of photosystem II, oxygen evolving part of natural photosynthesis, such as demanding isolation process and D1 photo-damage can also be solved by utilizing BiVO4 as the oxygen evolving part. Preceding research has not suggested any protein-inorganic-hybrid Z-scheme composed of both materials from natural photosynthesis and artificial photosynthesis. In this study, to realize this Z-schematic electron transfer, diffusion step of electron carrier, which usually degrades natural photosynthesis efficiency, was eliminated. Instead, BiVO4 and Pt-photosystem I were all linked together by the mediator gold. Synthesized all-solid-state hybrid materials show enhanced hydrogen evolution ability directly from water when illuminated with visible light.

  • PDF