• Title/Summary/Keyword: 2D solid

Search Result 1,365, Processing Time 0.035 seconds

Effect of Heating Rates on Microstructures in Brazing Joints of STS304 Compact Heat Exchanger using MBF 20 (MBF 20으로 브레이징한 STS304 콤팩트 열교환기 접합부의 미세조직에 미치는 가열속도의 영향)

  • Kim, Jun-Tae;Heo, Hoe-jun;Kim, Hyeon-Jun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.46-53
    • /
    • 2016
  • Effect of heating rate on microstructure of brazed joints with STS 304 Printed Circuit Heat Exchanger (PCHE),which was manufactured as large-scale($1170(L){\times}520(W)){\times}100(T)$, mm), have been studied to compare bonding phenomenon. The specimens using MBF 20 was bonded at $1080^{\circ}C$ for 1hr with $0.38^{\circ}C/min$ and $20^{\circ}C/min$ heating rate, respectively. In case of a heating rate of $20^{\circ}C/min$, overflow of filler metal was observed at the edge of a brazed joints showing the height of filler metal was decreased from $100{\mu}m$ to $68{\mu}m$. At the center of the joints, CrB and high Ni contents of ${\gamma}$-Ni was existed. For the joints brazed at a heating rate of $0.38^{\circ}C/min$, the height of filler was decreased from $100{\mu}m$ to $86{\mu}m$ showing the overflow of filler was not appeared. At the center of the joints, only ${\gamma}$-Ni was detected gradating the Ni contents from center. This phenomenon was driven from a diffusion amount of Boron in filler metal. With a fast heating rate $20^{\circ}C/min$, diffusion amount of B was so small that liquid state of filler metal and base metal were reacted. But, for a slow heating rate $0.38^{\circ}C/min$, solid state of filler metal due to low diffusion amount of B reacted with base metal as a solid diffusion bonding.

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

  • Tribst, Joao Paulo Mendes;Dal Piva, Amanda Maria de Oliveira;Borges, Alexandre Luiz Souto;Rodrigues, Vinicius Aneas;Bottino, Marco Antonio;Kleverlaan, Cornelis Johannes
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

A study on the fast prediction of the fragmentation zone using artificial neural network when a blasting occurs around a tunnel (인공신경망을 이용한 터널 주변 폭파 시 파쇄영역의 빠른 예측에 관한 연구)

  • You, Kwang-Ho;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.81-95
    • /
    • 2013
  • When collapse occurs due to explosion near a tunnel, fragmentation zone should be comprehended quickly to recover the function of the tunnel itself. In this study, a method to interpret explosion behavior and predict the fragmentation zone fast. For this purpose, the various 3D-meshes were generated using SolidWorks and explosion analyses were carried out using AUTODYN. The influence of explosion variables such as source location on fragmentation volume were examined by performing sensitivity analyses. Also, a training database for an artificial neural network analysis had been established and the optimal training model was selected, and the predicted results for fragmentation volume and radius were verified. The suggested method had demonstrated that it could be effective for the fast prediction of fragmentation zone.

Anaerobic codigestion of urban solid waste fresh leachate and domestic wastewaters: Biogas production potential and kinetic

  • Moujanni, Abd-essamad;Qarraey, Imane;Ouatmane, Aaziz
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • The Biochemical Methane Potential (BMP) of fresh leachate and domestic wastewaters codigestion was determined by laboratory Bach Tests at $35^{\circ}C$ over a period of 90 d using a wide range of leachates volumetric ratios from 0% to 100%. To simulate wastewaters plant treatment step, all the ratios were first air stripped for 48 h before anaerobic incubation. The kinetic of biogas production was assessed using modified Gompertz model and exponential equation. The results obtained showed that cumulative biogas production was insignificant in the case of wastewaters monodigestion while the codigestion significantly improves the BMP. Air stripping pretreatment had positive effect on both ammonium concentration and volatiles fatty acids with reduction up to 75% and 42%, respectively. According to the Modified Gompertz model, the optimal anaerobic co-digestion conditions both in terms of maximal biogas potential, start-up period and maximum daily biogas production rate, could be achieved within large leachate volumetric ratios from 25% to 75% with a maximum BMP value of 438.42 mL/g volatile solid at 50% leachate ratio. The positive effect of codigestion was attributed to a dilution effect of chemical oxygen demand and volatile fatty acid concentrations to optimal range that was between 11.7 to $32.3gO_2/L$ and 2.1 to 7.4 g/L, respectively. These results suggested that the treatment of fresh leachate by their dilution and co digestion at wastewaters treatment plants could be a promising alternative for both energetic and treatment purposes.

Effect of Ag Nanolayer in Low Temperature Cu/Ag-Ag/Cu Bonding (저온 Cu/Ag-Ag/Cu 본딩에서의 Ag 나노막 효과)

  • Kim, Yoonho;Park, Seungmin;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.59-64
    • /
    • 2021
  • System-in-package (SIP) technology using heterogeneous integration is becoming the key of next-generation semiconductor packaging technology, and the development of low temperature Cu bonding is very important for high-performance and fine-pitch SIP interconnects. In this study the low temperature Cu bonding and the anti-oxidation effect of copper using porous Ag nanolayer were investigated. It has been found that Cu diffuses into Ag faster than Ag diffuses into Cu at the temperatures from 100℃ to 200℃, indicating that solid state diffusion bonding of copper is possible at low temperatures. Cu bonding using Ag nanolayer was carried out at 200℃, and the shear strength after bonding was measured to be 23.27 MPa.

Analysis of tetracyclines in shrimp samples based on a two-step extraction approach prior to high-performance liquid chromatography

  • Thinnakorn Sukkhunthod;Thanakorn Pluangklang;Sumita Boonnab;Sira Sansuk;Phitchan Sricharoen;Maliwan Subsadsana
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.211-219
    • /
    • 2024
  • This study presents a sensitive and reliable method for determining tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) residues in shrimp samples. A two-step process involving liquid-liquid extraction (LLE) followed by solid-phase extraction (SPE) was developed prior to HPLC analysis. The target analytes were effectively extracted using EDTA/McIlvaine buffer (pH 4.0): methanol (80:20, %v/v), with subsequent clean-up using a C18 SPE cartridge. HPLC separation was conducted on a C18 column (250 mm × 4.6 mm i.d., 5 ㎛) at 30 ℃, using 0.01 % trifluoroacetic acid (A) and acetonitrile (B) as the mobile phase. A gradient elution protocol was applied, transitioning from 85(A):15(B) %v/v to 70(A):30(B) %v/v at 7 min, with a 5 min hold, followed by adjustment to 85(A):15(B) %v/v for 13-14 min. The detection was performed using photodiode array (PDA) at 365 nm with a flow rate of 1.0 mL/min. The calibration curves exhibited good linearity within a concentration range of 0.4-6.0 ㎍/mL (R2 > 0.995). The limits of detection (LOD) for TC, OTC, and CTC in shrimp were 0.034, 0.029, and 0.021 ㎍/mL, respectively. The limits of quantitation (LOQ) for TC, OTC, and CTC were found to be 0.114, 0.097, and 0.071 ㎍/mL, respectively. Recoveries of TC, OTC, and CTC from spiked shrimp samples ranged from 91.0 % to 95.5 %, 92.4 % to 97.2 %, and 93.3 % to 96.6 %, respectively. This method was successfully applied to the determination of TC, OTC, and CTC residues in shrimp samples sourced from various local markets.

The Magnetic Properties of Polycrystalline Yttrium Iron Garnet by Ferromagnetic Resonance (강자성공명 현상을 이용한 YIG의 자기적 특성 연구)

  • 김기현;이대하;김영호
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.7-16
    • /
    • 1999
  • Stoichiometric and nonstoichiometric $Y_{3-x}Fe_{5+x}O_{12})$ polycrystalline samples (x=0.00, 0.05, 0.10, 0.30, -0.05, -0.10, -0.30) were prepared by solid state reaction method. The magnetic properties of the sample were investigated by FMR (ferromagnetic resonance) technique at microwave frequency 5.11 GHz (G-band) and 23.39 GHz (K-band) respectively. The spectroscopic splitting factor g were estimated to be 2.04~2.35 from the derivative absorption lines. As the samples became yttrium $(Y^{3+})$ excess and iron $(Fe^{3+})$ excess, Magnetizations were decreased. But resonance linewidth were increased. To investigate the anisotropy, the angular dependence of resonance magnetic fields were measured. Angular dependence of effective magnetizations were measured by FMR from 77 K to 300 K at K-band microwave frequency (23.39 GHz) and the saturation magnetizations were measured by VSM. The Bloch coefficients B and C were determined by fitting. $M_{eff}(0)$ was obtained by the extrapolation from 80 K. From this result, the spin wave stiffness constant D $(about\; 162~206 \;eV{\AA}^2)$and average square range of exchange interaction $$$(about \;5.84~12.13\;{\AA}^2)$ were determined.

  • PDF

Syntheses, Structures, and Characterization of Two Novel Copper(II) and Cadmium(II) Compounds Based on Pyridyl Conjugated 1,2,3-Triazole

  • Hong, Jin-Long;Qu, Zhi-Rong;Ma, Hua-Jun;Wang, Gai-Gai;Zhao, Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1495-1500
    • /
    • 2014
  • Two new complexes with 5-methyl-1-(pyridine-3-yl)-1H-1,2,3-triazole-4-carboxylic acid (Hmptc) ligand: [$Cd(mptc)_2(H_2O)_4$] (1) and $[Cu(mptc)_4{\cdot}2H_2O]_n$ (2) were prepared and their crystal structures were determined by single crystal X-ray diffraction analyses. In complex 1, the Cd(II) ions coordinates with the pyridyl nitogen atom from the Hmptc ligand, forming a mononuclear Cd(II) compound. Complex 2 exhibits a novel two-dimensional (2D) polymer in which four Hmptc ligands stabilize the Cu(II) atom. And the coordination involves one nitrogen atom of the triazole, one oxygen atom of the carboxylic acid and the pyridyl nitrogen atom. In addition, FT-IR and solid-state fluorescent emission spectroscopy of two compounds have been determined.

Thermal Phenomenon of $BaMgAl_{10}O_{17}$:$Eu^{2+}$ Blue Phosphor by XANES and Rietveld Method

  • Kim, Kwang-Bok;Koo, Kyung-Wan;Chun, Hui-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.210-213
    • /
    • 2002
  • The blue phosphor, $BaMgAl_{10}O_{17}$:$Eu^{2+}$, showing a blue emission band at about 450 nm were prepared by solid state reaction of BaC $O_3$, A $l_2$ $O_3$, MgO and E $u_2$ $O_3$ with Al $F_3$ as a flux. The thermal quenching of BaMgAl $O_{17}$:E $u^{2+}$ phosphor significantly reduces the intensity of the blue emission. It is reduced by an amount of 50% after heating at around 800$^{\circ}C$ for 1 hr. The red emission in the 580∼720 nm region of $^{5}$ $D_{0}$\longrightarro $w^{7}$ $F_1$ and $^{5}$ $D_{0}$\longrightarro $w^{7}$ $F_2$ transition of $Eu^{3+}$ is produced from the phosphor heated above 1,100$^{\circ}C$. The EPR spectrum also reveals that some part of E $u^{2+}$ ions are oxidized to trivalent ions above 1,100$^{\circ}C$ at around 90 and 140mT. This oxidation evidence is also detected from XANES absorption spectra for $L_{III}$ shell of Eu ions: an absorption peak is at 6,977eV of E $u^{2+}$ and 6,984eV of $Eu^{3+}$. The combined X-ray and neutron data suggests that the new phase of EuMgA $l_{11}$ $O_{19}$ magnetoplumbite structure may be formed by heat treatment.eat treatment.tment.eat treatment.tment.t.

  • PDF

Development of the Korean 2.75 inch Rocket Propulsion System (한국형 2.75 인치 로켓 추진기관 개발)

  • Kang, Kiha;Lee, Yongbum;Yeom, Yongyeol;Bang, Gibok;Yang, Youngjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.70-77
    • /
    • 2014
  • In this paper, the development of unique model of the 2.75 inch rocket propulsion system is described. Recently developed korean 2.75 inch rocket propulsion system shows the improvement of a flame stability resulted from a change in the configuration of propellant grain, and of an incidental ignition protection function using the EMI(electromagnetic interference) filter on ignition system. Moreover it is shown that a directional flight stability is improved by increasing the number of fins and changing the nozzle configuration. Static firing test and thermal shock test were conducted for the validation before flight, and flight test of 210 rounds of rockets was conducted to verify the trajectory uniformity. In addition, intellectual property issues can be overcome with the unique korean 2.75 inch rocket motor as well as the performance improvement.