• Title/Summary/Keyword: 2D hydrodynamic model

Search Result 145, Processing Time 0.023 seconds

Development for Fishing Gear and Method of the Non-Float Midwater Pair Trawl Net(I) - Opening Efficiency of Model Net according to the Length of Lower Warp - (무부자 쌍끌이 중층망 어구어법의 개발(I) - 아래끌줄의 길이에 따른 모형어구의 전개성능 -)

  • 이주희;유제범;이춘우;권병국;김정문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • The midwater pair trawl which is being used at present in Korea have several problems. Firstly, it is difficult to control the net height on high towing speed. Secondly, net breaking often occurs owing to floats and thirdly, the volume of net on the net drum is so large. This study is aiming for examining the possibility of application for the Korean midwater pair trawl through the model experiment of non-float midwater pair trawl. The model of non-float midwater pair trawl was manufactured as 1/100 of the full scale net which is being used in bottom pair trawl for 850ps class considering the Tauti's Similarity law. The model experiment was carried out to analyze the opening efficiency according to the variation of lower warp length and the opening efficiency was investigated between th proto type and non-float type. The results obtained can be summarized as follows ; 1. The hydrodynamic resistance of non-float type was about 10~20% smaller than that of the proto type and it increased about 1ton according to the increase of dL at the condition of the same flow speed. The resistance acting on the lower warp decreased about 5% but that of the upper warp increased according to the increase of lower warp length (dL) at the condition of the same flow speed. 2. The net height of the non-float type decreased almost linearly according as the increased of flow speed and it increased in a logarithmic functional form with the increase of the lower warp length at the condition of the same flow speed. On the decreasing rate of the net height, the non-float type was lower than the proto type and the difference of the decreasing rate was about 12% at 3.0 knot, 25% at 4.0 knot, 25% at 4.0 knot respectively when dL was 30m. 3. The net width of non-float type was not varied so much as only 2m range and was larger than that of proto type. 4. The mouth area of non-float type decreased in a exponential functional form. On the decreasing rate of the mouth area, the non-float type was lower than the proto type. The filtering volume increased in a logarithmic functional form with increasing flow speed and the filtering volume of proto type decreased steeply over 3.0knot, but that of non-float type increased until 4.0knot. 5. The optimal length of lower warp was when the value of dL was about 30m and the optimal position of front weight was at the connection point of four net pendants.

Effectiveness of Wave Resonator for Secondary Undulation under Real Sea Conditions (실해역에서 공진장치를 이용한 부진동의 제어)

  • Jeong, Jin-Woo;Kim, Do-Sam;Park, Jong-Bae;An, Sung-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.51-60
    • /
    • 2010
  • In this study, the performance evaluation of a conventional wave resonator at the entrance of a port or a pier against secondary undulation has been performed using 2D hydrodynamic modeling within port. A wave resonator has been designed for the attenuation of the secondary undulation induced by the long-periodic waves. The controlled performance of the wave resonator has been numerically investigated for CGWAVE MODULE of finite-element model of SMS (Surface water Modeling System) based on the elliptic mild-slope wave equation. SMS was verified though the comparisons with analytical solution performed by Ippen and Goda (1963). Also, It was confirmed that a wave resonator of a rectangular model harbor is effective enough to control the secondary undulation when it compares variation of water level with the case of no resonance system. From the above results, amplification phenomenon induced by long-period waves transferred from 1900 sec to 2100 sec when it applied a wave resonator in Busan Gamcheon Port which is a deep-sea. And it was confirmed that a wave resonator of Pohang New Port attenuates largely long-period waves which are within the range of 300 sec induced by long-period motion of the moored ship.

A Study on the Breakdown in MHEMTs with InAlAs/InGaAs Heterostructure Grown on the GaAs substrate (InAlAs/InGaAs/GaAs MHEMT 소자의 항복 특성에 관한 연구)

  • Son, Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.1-8
    • /
    • 2011
  • One of the most important parameters that limit maximum output power of transistor is breakdown. InAlAs/InGaAs/GaAs Metamorphic HEMTs (MHEMTs) have some advantages, especially for cost, compared with InP-based ones. However, GaAs-based MHEMTs and InP-based HEMTs are limited by lower breakdown voltage for output power even though they have good microwave and millimeter-wave frequency performance with lower minimum noise figure. In this paper, InAlAs/$In_xGa_{1-x}As$/GaAs MHEMTs are simulated and analyzed for breakdown. The parameters affecting breakdown are investigated in the fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs wafer using the hydrodynamic transport model of a 2D commercial device simulator. The impact ionization and gate field effect in the fabricated device including deep-level traps are analyzed for breakdown. In addition, Indium mole-fraction-dependent impact ionization rates are proposed empirically for $In_{0.52}Al_{0.48}As/In_xGa_{1-x}As$/GaAs MHEMTs.

Simulation of Mixing Transport on Inner Reservoir and Influence Impacts on Outer Region for the Saemankeum Effluents Caused by Gate Operation (새만금호 수문 개방에 따른 내측의 혼합수송 및 외해역의 방류영향모의)

  • Suh Seung-Won;Cho Wan-Hei;Yoo Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • Numerical model tests are done in order to evaluate impact zone of low salinity water on outer region of the developing Saemankeum reservoir. Also saline mixing processes are investigated f3r the inner reservoir with consideration of Mankyoung and Donjin riverine flood discharges when sea water is passing freely through gate. In these analyses 2-d ADCIRC, 3-d TIDED3D and CE-QUAL-ICM models are used. Through models tests, it is found that inner reservoir mixing process caused by inflow of outer sea water occurs gradually. It takes at least one month for complete mixing on Mankyoung part and 6 month on Dongjin part of the reservoir. When Sinsi or Garyeok gates are opened to control inner reservoir level, discharging velocities decrease exponentially from the gates, but show very strong currents of 0.5m/sec to the 10Km region apart. These results imply that hydrodynamic circulation and ecosystem of frontal region of the Saemankeum dike might be affected in amount by gate operations, since low saline inner waters are discharged periodically at ebb tide according to tidal level.

Effect of Installing a Selective Withdrawal Structure for the Control of Turbid Water in Soyang Reservoir (탁수조절을 위한 소양호 선택취수설비 설치 효과 분석)

  • Chung, Se Woong;Park, Hyung Seok;Yoon, Sung Wan;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.743-753
    • /
    • 2011
  • One of the most important water management issues of Soyang Reservoir, located in North Han River in Korea, is a long term discharge of turbid water to downstream during flood season. Installation of a selective withdrawal structure (SWS) is planned by the reservoir management institute as a control measure of outflow water quality and associated negative impacts on downstream water use and ecosystem. The objective of the study was to explore the effectiveness of the SWS on the control of outflow turbidity under two different hydrological years; one for normal flood year and another for extreme flood year. A two-dimensional (2D), laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was set up and calibrated for the reservoir and used to evaluate the performance of the proposed SWS. The results revealed that the SWS can be an effective method when the ${\Theta}$ value, the ratio between the amount of turbid water that containing suspended sediment (SS) greater than 25 mg/L and the total storage of the reservoir, is 0.59 during the normal flood year. However, the effectiveness of the SWS could be marginal or negative in the extreme flood year when ${\Theta}$ was 0.83. The results imply that the SWS is an effective alternative for the control of turbid water for moderate flood events, but not a sufficient measure for large flood events that are expected to happen more often in the future because of climate change.

Evaluation of Suspended Solids and Eutrophication in Chungju Lake Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 부유물질 및 부영양화 모의평가)

  • Ahn, So Ra;Kim, Sang Ho;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1115-1128
    • /
    • 2013
  • The purpose of this study is to evaluate the suspended solids and eutrophication processes relationships in Chungju lake using CE-QUAL-W2, two-dimensional (2D) longitudinal/vertical hydrodynamic and water quality model. For water quality modeling, the lake segmentation was configured as 7 branches system according to their shape and tributary distribution. The model was calibrated (2010) and validated (2008) using 2 years of field data of water temperature, suspended solids (SS), total nitrogen (TN), total phosphorus (TP) and algae (Chl-a). The water temperature began to increase in depth from April and the stratification occurred at about 10 m early July heavy rain. The high SS concentration of the interflow density currents entering from the watershed was well simulated especially for July 2008 heavy rainfall event. The simulated concentration range of TN and TP was acceptable, but the errors might occur form the poor reflection for sedimentation velocity of nitrogen component and adsorption-sediment of phosphorus in model. The concentration of Chl-a was simulated well with the algal growth patterns in summer of 2010 and 2008, but the error of under estimation may come from the use of width-averaged velocity and concentration, not considering the actual to one side inclination by wind effect.

On characteristics of environmental correction factors in the South Indian Ocean by Topex/Poseidon satellite altimetric data (Topex/Poseidon 위성의 Altimeter자료를 이용한 남인도양의 환경보정인자 특성에 관한 연구)

  • 윤홍주;김영섭;이재철
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.117-128
    • /
    • 1998
  • Topex/Poseidon satellite, launched in Auguest 1992, has provided more 5 years of very good quality data. Efficient improvements, either about instrumental accuracy or about sea level data correction, have been made so that Topex/Poseidon has become presently a wonderful tool for many researchers. The first mission data of 73 cycles, September 1992 - August 1994, was used to our study in order to know characteristics of environmental correction factors in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean. According to standard procedures as defined under user handbook for sea surface height data processes, then we have chosen cycles 43 as the cycle of reference because this cycle has provided the completed data for measurement points and has presented the exacted position of ground track compared to another cycles. It was computed variations of various factors for correction in ascending ground track 103(Amsterdam-Kerguelen continental plateau) and descending ground track170 (Crozet basin). Here the variations of ionosphere, dry troposphere, humid troposphere, electromagnetic bias, elastic tide and loading tide were generally very smaller as a few of cm, but the variations of oceanic tide(30-35cm) and inverted barometer(15-30cm) were higher than another factors. For the correction of ocean tide, our model(CEFMO: Code d' Elements Finis pour la Maree Oceanique) - This is hydrodynamic model that is very well applicated in all oceanic situations - was used because this model has especially good solution in the coastal and island area as the open sea area. Conclusionally, it should be understood that the variation of ocean free surface is mainly under the influence of tides(>80-90%) in the Amsterdam - Crozet- Kerguelen region of the South Indian Ocean.

Analysis of Sedimentation Around Jetties in the West Coast: based on field measurement and hydrodynamic modeling (서해연안 돌제구조물 주위의 침퇴적 해석: 실측 및 수동역학 모델에 의한 초기추정)

  • Suh, Seung-Won;Yoo, Gyeong-Sun;Lee, Hwa-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2007
  • A sedimentation analysis has been attempted to figure out sedimentation environment due to construction of coastal jetties, such as fish harbor dike, flow guided dike and jetty in shallow Kusipo area, in which tidal range marks up to 6.6 meters in spring tide. As an initial approach of understanding field measurement were done on several stations along reference lines with total station and photo analysis taken by remote controlled small air craft far one and half years. Also numerical tests were done by 2-D ADCIRC model considering dry-wet treatment to evaluate flow and bottom shear stress variations. According to direct measurement, deposition seems to be dominant on Kusipo beach. Model results show bottom shear stress lessens to $0.10{\sim}0.15\;N/m^2$ on most shadow zone of jetties and the inner zone is suffering sedimentation as a result of dike construction. However this is the first approach with limited analysis, thus it should be dealt further considering physical characteristics of bottom sediments in a complete sediment model on upcoming study.

Numerical Analysis for Nonlinear Static and Dynamic Responses of Floating Crane with Elastic Boom (붐(Boom)의 탄성을 고려한 해상크레인의 비선형 정적/동적 거동을 위한 수치 해석)

  • Cha, Ju-Hwan;Park, Kwang-Phil;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.501-509
    • /
    • 2010
  • A floating crane is a crane-mounted ship and is used to assemble or to transport heavy blocks in shipyards. In this paper, the static and dynamic response of a floating crane and a heavy block that are connected using elastic booms and wire ropes are described. The static and dynamic equations of surge, pitch, and heave for the system are derived on the basis of flexible multibody system dynamics. The equations of motion are fully coupled and highly nonlinear since they involve nonlinear mass matrices, elastic stiffness matrices, quadratic velocity vectors, and generalized external forces. A floating frame of reference and nodal coordinates are employed to model the boom as a flexible body. The nonlinear hydrostatic force, linear hydrodynamic force, wire-rope force, and mooring force are considered as the external forces. For numerical analysis, the Hilber-Hughes-Taylor method for implicit integration is used. The dynamic responses of the cargo are analyzed with respect to the results obtained by static and numerical analyses.

Effect of Thermal Conductivity of Bearing on the Lubrication Performance of Parallel Slider Bearing (베어링의 열전도율이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Lee, WonSeok;Park, JiBin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.247-253
    • /
    • 2018
  • Temperature rise due to viscous shear of the lubricating oil generates hydrodynamic pressure, even if the lubricating surfaces are parallel. This effect, known as the thermal wedge effect, varies significantly with film-temperature boundary conditions. The bearing conducts a part of the heat generated; hence, the oil temperature varies with the thermal conductivity of the bearing. In this study, we analyze the effect of thermal conductivity on the thermohydrodynamic (THD) lubrication of parallel slider bearings. We numerically analyze the continuity equation, Navier-Stokes equation, energy equation including the temperature-viscosity and temperature-density relations for lubricants, and the heat conduction equation for bearing by creating a 2D model of the micro-bearing using the commercial computational fluid dynamics (CFD) code FLUENT. We then compare the variation in temperature, viscosity, and pressure distributions with the thermal conductivity. The results demonstrate that the thermal conductivity has a significant influence on THD lubrication characteristics of parallel slider bearings. The lower the thermal conductivity, the greater the pressure generation due to the thermal wedge effect resulting in a higher load-carrying capacity and smaller frictional force. The present results can function as the basic data for optimum bearing design; however, the applicability requires further studies on various operating conditions.