DOI QR코드

DOI QR Code

베어링의 열전도율이 평행 슬라이더 베어링의 윤활성능에 미치는 영향

Effect of Thermal Conductivity of Bearing on the Lubrication Performance of Parallel Slider Bearing

  • 박태조 (경상대학교 기계공학부.항공기부품기술연구소) ;
  • 이원석 (경상대학교 기계항공정보융합공학부) ;
  • 박지빈 (경상대학교 기계항공정보융합공학부)
  • Park, TaeJo (School of Mechanical Engineering, ReCAPT, Gyeongsang National University) ;
  • Lee, WonSeok (Under-Graduate School, School of Mechanical & Aerospace Engineering, Gyeongsang National University) ;
  • Park, JiBin (Under-Graduate School, School of Mechanical & Aerospace Engineering, Gyeongsang National University)
  • 투고 : 2018.10.14
  • 심사 : 2018.11.20
  • 발행 : 2018.12.31

초록

Temperature rise due to viscous shear of the lubricating oil generates hydrodynamic pressure, even if the lubricating surfaces are parallel. This effect, known as the thermal wedge effect, varies significantly with film-temperature boundary conditions. The bearing conducts a part of the heat generated; hence, the oil temperature varies with the thermal conductivity of the bearing. In this study, we analyze the effect of thermal conductivity on the thermohydrodynamic (THD) lubrication of parallel slider bearings. We numerically analyze the continuity equation, Navier-Stokes equation, energy equation including the temperature-viscosity and temperature-density relations for lubricants, and the heat conduction equation for bearing by creating a 2D model of the micro-bearing using the commercial computational fluid dynamics (CFD) code FLUENT. We then compare the variation in temperature, viscosity, and pressure distributions with the thermal conductivity. The results demonstrate that the thermal conductivity has a significant influence on THD lubrication characteristics of parallel slider bearings. The lower the thermal conductivity, the greater the pressure generation due to the thermal wedge effect resulting in a higher load-carrying capacity and smaller frictional force. The present results can function as the basic data for optimum bearing design; however, the applicability requires further studies on various operating conditions.

키워드

OHHHB9_2018_v34n6_247_f0001.png 이미지

Fig. 1. Schematic of 2D parallel slider bearing.

OHHHB9_2018_v34n6_247_f0001.png 이미지

Fig. 1. Schematic of 2D parallel slider bearing.

OHHHB9_2018_v34n6_247_f0002.png 이미지

Fig. 2. Example of grid structure at inlet region.

OHHHB9_2018_v34n6_247_f0002.png 이미지

Fig. 2. Example of grid structure at inlet region.

OHHHB9_2018_v34n6_247_f0003.png 이미지

Fig. 3. Contour plot of temperature. (a) SiO2, (b) Steel, (c) Carbon.

OHHHB9_2018_v34n6_247_f0003.png 이미지

Fig. 3. Contour plot of temperature. (a) SiO2, (b) Steel, (c) Carbon.

OHHHB9_2018_v34n6_247_f0004.png 이미지

Fig. 4. Temperature distribution at X=0.5.

OHHHB9_2018_v34n6_247_f0004.png 이미지

Fig. 4. Temperature distribution at X=0.5.

OHHHB9_2018_v34n6_247_f0005.png 이미지

Fig. 5. Contour plot of film temperature distribution.(a) SiO2, (b) Steel, (c) Carbon.

OHHHB9_2018_v34n6_247_f0005.png 이미지

Fig. 5. Contour plot of film temperature distribution.(a) SiO2, (b) Steel, (c) Carbon.

OHHHB9_2018_v34n6_247_f0006.png 이미지

Fig. 6. Temperature distribution at Y=0.5.

OHHHB9_2018_v34n6_247_f0006.png 이미지

Fig. 6. Temperature distribution at Y=0.5.

OHHHB9_2018_v34n6_247_f0007.png 이미지

Fig. 7. Dimensionless viscosity distribution at Y=0.5.

OHHHB9_2018_v34n6_247_f0007.png 이미지

Fig. 7. Dimensionless viscosity distribution at Y=0.5.

OHHHB9_2018_v34n6_247_f0008.png 이미지

Fig. 8. Temperature distribution at X=0.5.

OHHHB9_2018_v34n6_247_f0008.png 이미지

Fig. 8. Temperature distribution at X=0.5.

OHHHB9_2018_v34n6_247_f0009.png 이미지

Fig. 9. Dimensionless viscosity distribution at X=0.5.

OHHHB9_2018_v34n6_247_f0009.png 이미지

Fig. 9. Dimensionless viscosity distribution at X=0.5.

OHHHB9_2018_v34n6_247_f0010.png 이미지

Fig. 10. Contour plot of pressure distribution. (a) SiO2, (b) Steel, (c) Carbon.

OHHHB9_2018_v34n6_247_f0010.png 이미지

Fig. 10. Contour plot of pressure distribution. (a) SiO2, (b) Steel, (c) Carbon.

OHHHB9_2018_v34n6_247_f0011.png 이미지

Fig. 11. Pressure distribution.

OHHHB9_2018_v34n6_247_f0011.png 이미지

Fig. 11. Pressure distribution.

OHHHB9_2018_v34n6_247_f0012.png 이미지

Fig. 12. Effect of bearing thermal conductivity on the (a) load carrying capacity, (b) friction force.

OHHHB9_2018_v34n6_247_f0012.png 이미지

Fig. 12. Effect of bearing thermal conductivity on the (a) load carrying capacity, (b) friction force.

Table 1. Bearing size and operating condition

OHHHB9_2018_v34n6_247_t0001.png 이미지

Table 1. Bearing size and operating condition

OHHHB9_2018_v34n6_247_t0001.png 이미지

Table 2. Oil properties

OHHHB9_2018_v34n6_247_t0002.png 이미지

Table 2. Oil properties

OHHHB9_2018_v34n6_247_t0002.png 이미지

Table 3. Thermal properties of bearing material

OHHHB9_2018_v34n6_247_t0003.png 이미지

Table 3. Thermal properties of bearing material

OHHHB9_2018_v34n6_247_t0003.png 이미지

참고문헌

  1. Lebeck, A. O., "Parallel sliding load support in the mixed friction regime. Part 1 - The experimental data", ASME J. Tribol., Vol. 109, No. 1, pp. 189-195, 1987. https://doi.org/10.1115/1.3261317
  2. Khonsari, M. M., "A review of thermal effects in hydrodynamic bearings. Part I: Slider and thrust bearings", ASLE Trans., Vol. 30, No. 1, pp. 19-25, 1987. https://doi.org/10.1080/05698198708981725
  3. Cameron, A., "The viscosity wedge", ASLE Trans., Vol. 1, No. 2, pp. 248-253, 1958. https://doi.org/10.1080/05698195808972337
  4. Cui, J., Kaneta, M., Yang, P., Yang, P., "The relation between thermal wedge and thermal boundary conditions for the load-carrying capacity of a rectangular pad and a slider with parallel gaps", ASME J. Tribol., Vol. 138, No. 2, 024502-1-6, 2016.
  5. Park, T. J., Kim, M. G., "Effect of film-temperature boundary conditions on the lubrication performance of parallel slider bearing", J. Korean Soc. Tribol. Lubr. Eng., Vol. 33, No. 5, pp. 207-213, 2017.
  6. Gropper, D., Wang, L., Harvey, T. J., "Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings", Tribol. Int., Vol. 94, pp. 509-529, 2016. https://doi.org/10.1016/j.triboint.2015.10.009
  7. Papadopoulos, C. I., Kaiktsis, L., Fillon, M., "Computational fluid dynamics thermohydrodynamic analysis of three-dimensional sector-pad thrust bearings with rectangular dimples", ASME J. Tribol., Vol. 136, No. 1, pp. 011702-1-11, 2014.
  8. Jeong, Y., Park, T., "THD analysis of surface textured parallel thrust bearing: Effect of dimple radius and depth", J. Korean Soc. Tribol. Lubr. Eng., Vol. 30, No. 5, pp. 303-310, 2014. https://doi.org/10.9725/kstle.2014.30.5.303
  9. Meng, X., Khonsari, M. M. "On the effect of viscosity wedge in micro-textured parallel surfaces", Tribol. Int., Vol. 107, pp. 116-124, 2017. https://doi.org/10.1016/j.triboint.2016.11.007
  10. Meng, X., Khonsari, M. M. "Viscosity wedge effect of dimpled surfaces considering cavitation effect", Tribol. Int., Vol. 122, pp. 58-66, 2018. https://doi.org/10.1016/j.triboint.2018.02.011
  11. Park, T. J., Kim, M. G., "Thermohydrodynamic lubrication of surface-textured parallel slider bearing: Effect of dimple depth", J. Korean Soc. Tribol. Lubr. Eng., Vol. 33, No. 6, pp. 288-295, 2017.
  12. ANSYS FLUENT User Guide, Release 14.0, ANSYS, Inc., 2011.