• Title/Summary/Keyword: 2D g-Navier-Stokes equations

Search Result 25, Processing Time 0.024 seconds

Optimization Inverse Design Technique for Fluid Machinery Impellers (유체기계 임펠러의 최적 역설계 기법)

  • Kim J. S.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1998
  • A new and efficient inverse design method based on the numerical optimization technique has been developed. The 2-D incompressible Navier-Stokes equations are solved for obtaining the objective functions and coupled with the optimization procedure to perform the inverse design. The steepest descent and the conjugate gradient method have been applied to find the searching direction. The golden section method was applied to compute the design variable intervals. It has been found that the airfoil and the pump impellers are well converged to their targeting shapes.

  • PDF

Numerical Simulation of Cascade Flows with Rotor-Stator Interaction Using the Multiblocked Grid (중첩 격자계를 이용한 동익과 정익의 상호작용이 있는 익렬 유동해석)

  • Jung, Y. R.;Park, W. G.;Lee, S. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.163-169
    • /
    • 1999
  • The numerical procedure has been developed for simulating incompressible viscous flow around a turbine stage with rotor-stator interaction. This study solves 2-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system. The Marker-and-Cell concept is applied to efficiently solve continuity equation. To impose an accurate boundary condition, O-H multiblocked grid system is generated. O-type grid and H-type grid is generated near and outer rotor-stator The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. Turbulent flows have been modeled by the Baldwin- Lomax turbulent model. To validate present procedure, the time averaged pressure coefficients around the rotor and stator are compared with experiment and a good agreement obtained.

  • PDF

The Inverse Design Technique of Axial Blade Using the Parallel Calculation (병렬 연산을 이용한 축류 블레이드의 역설계)

  • Cho, J. K.;Ahn, J. S.;Park, W. G.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.200-207
    • /
    • 1999
  • An efficient inverse design technique based on the MGM (Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The solver is parallelized by using the domain decomposition method and the standard MPI library for communications between the processors. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the axial blade. It has been found that they are well converged to their target pressure distribution.

  • PDF

Numerical Analysis of 3-D Turbulent Flows Around a High Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 3차원 난류유동 해석)

  • Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • An iterative time marching procedure for solving incompressible turbulent flow has been applied to the flows around a high speed train including cross-wind effects. This procedure solves three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using first-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. Turbulent flows have been modeled by Baldwin-Lomax turbulent model. To validate present procedure, the flow around a high speed train at zero yaw angle was simulated and compared with experimental data. Generally good agreement with experiments was achieved. The flow fields around the high speed train at 9.2°, 16.7°, and 45° of yaw angle were also simulated.

  • PDF

FLOW AND TEMPERATURE ANALYSIS WITHIN AUTOMOBILE CABIN BY DISCHARGED HOT AIR FROM DEFROST NOZZLE

  • Park, W.G.;Park, M.S.;Jang, K.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.139-143
    • /
    • 2006
  • As an automobile tends to be high grade, the needs for more luxurious interior and comfortable HVAC system are emerged. The defrosting ability is another major factor of the performances of HVAC system. The present work is to simulate the flow and the temperature field of cabin interior during the defrost mode. The three-dimensional incompressible Navier-Stokes equations and energy equation were solved on the multi blocked grid system by the iterative time marching method and AF scheme, respectively. The present computations were validated by the comparison of the temperature field of a driven cavity and velocity field of 1/5 model scale of an automobile. Generally good agreements were obtained. By the present computation, the complicated features of flow and temperature within the automotive cabin interior could be well understood.

Incompressible Viscous Flow Analysis Around a Three Dimensional Minivan-Like Body (3차원 미니밴 형상 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Park Y. J.;Kim J. S.;Hong S. H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.46-53
    • /
    • 1997
  • The flow field around a three dimensional minivan-like body has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. A H-H type of multi-block grid system is generated around a three dimensional minivan-like body. Turbulent flows have been modeled by the Baldwin-Lomax turbulent model. To validate present procedure, the flows around the Ahmed body with 12.5° of slant angle are simulated. A good agreement with other numerical results is achived. After code validation, the flows around a mimivan-like body are simulated. The simulation shows three dimensional vortex-pair just behind body. The flow separation is also observed on the rear of the body. It has concluded that the results of present study properly agreed with physical flow phenomena.

  • PDF

A STUDY ABOUT THE EFFECT OF MODEL CONSTANTS OF TWO CAVITATION MODELS ON CAVITY LENGTH (서로 다른 두 개의 공동모델의 모델 상수값이 공동의 길이에 미치는 영향연구)

  • Jin, M.S.;Ha, C.T.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.25-32
    • /
    • 2012
  • This work was devoted to compare two different cavitation models to study the dependency of model constants. The cavitation model of Merkle et al.(2006) and Kunz et al.(2000) were used for the present computational study. The cavitation models were coupled with the incompressible unsteady Reynolds-Averaged Navier-Stokes solver to indicate the vaporization and condensation processes. For this purpose, a preconditioning method was added as the pseudo-time term to solve the unsteady stiffness problems. For the validation of the numerical simulation, the computation was performed for the cavitating flow in a converging-diverging channel. The present results show that Merkle's cavitation model is independent to the model constants, and the higher numerical accuracy over Kunz's cavitation model.

Incompressible Viscous Flow Analysis around a High-Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Kim H. W.;Ha S. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.55-63
    • /
    • 1995
  • The flow field around a high-speed train including cross-wind effects has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations in the inertial frame using the iterative time marching scheme. The governing equations are differenced with 1st-order accurate backward difference scheme for the time derivatives, 3th-order accurate QUICK scheme for the convective terms and 2nd-order accurate central difference scheme for the viscous terms. The Marker-and-Cell concept was applied to efficiently solve continuity equation, which is differenced with 2nd-order accurate central difference scheme. The 4th-order artificial damping is added to the continuity equation for numerical stability. A C-H type of elliptic grid system is generated around a high-speed train including ground. The Baldwin-Lomax turbulent model was implemented to simulate the turbulent flows. To validate the present procedure, the flow around a high speed train at constant yaw angle of $45^{\circ}\;and\;90^{\circ}$ has been simulated. The simulation shows 3-D vortex generation in the lee corner. The flow separation is also observed around the rear of the train. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

AERODYNAMIC ANALYSIS AND COMPARISON OF EXPERIMENTAL DATA FOR 2-BLADED VERTICAL AXIS WIND TURBINE (2엽형 수직축 풍력발전기의 유동해석 및 실험 비교)

  • Hwang, M.H.;Kim, D.H.;Lee, J.W.;Oh, M.W.;Kim, M.H.;Ryu, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, aerodynamic analyses based on unsteady computational fluid dynamics (CFD) have been conducted for a 2-bladed vertical-axis wind turbine (VAWT) configuration. Reynolds-averaged Navier-Stokes equations with standard $k-{\varepsilon}$ and SST $k-{\varepsilon}$ turbulence models are solved for unsteady flow problems. The experiment model of 2-bladed VAWT has been designed and tested in this study. Aerodynamic experiment of the present VAWT model are effectively conducted using the vehicle mounted testing system. The comparison result between the experiment and the computational fluid dynamics (CFD) analysis are presented in order to verify the accuracy of CFD modeling with different turbulent models.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.