• Title/Summary/Keyword: 2D frames

Search Result 315, Processing Time 0.028 seconds

3D video coding for e-AG using spatio-temporal scalability (e-AG를 위한 시공간적 계위를 이용한 3차원 비디오 압축)

  • 오세찬;이영호;우운택
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.199-202
    • /
    • 2003
  • In this paper, we propose a new 3D coding method for heterogeneous systems over enhanced Access Grid (e-AG) with 3D display using spatio-temporal scalability. The proposed encoder produces four bit-streams: one base layer and enhancement layer l, 2 and 3. The base layer represents a video sequence for left eye with lower spatial resolution. An enhancement layer l provides additional bit-stream needed for reproduction of frames produced in base layer with full resolution. Similarly, the enhancement layer 2 represents a video sequence for right eye with lower spatial resolution and an enhancement layer 3 provides additional bit-stream needed for reproduction of its reference pictures with full resolution. In this system, temporal resolution reduction is obtained by dropping B-frames in the receiver according to network condition. The receiver system can select the spatial and temporal resolution of video sequence with its display condition by properly combining bit-streams.

  • PDF

A Study on the Development of the Split-Type Carbon Composite Bicycle Frames (분할형 탄소복합재 자전거 프레임 개발에 관한 연구)

  • Park, Chan Gon;Choi, Young;Kang, Bong Yong;Kim, Eun Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.139-143
    • /
    • 2017
  • Finite element analysis was performed for a split-type CFRP bicycle frame, which was designed to apply a compression molding process with carbon fiber prepreg for a conventional bicycle. An epoxy adhesive material for joining the frames was selected by the extent of stress at joint interfaces. The split-type bicycle frame was then formed and its weak parts examined by the boundary conditions according to reliability tests. The results verified the reliability of the bicycle frame after modification of these weak parts. The finished product was manufactured by using this developed split-type bicycle frame.

Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences

  • Hosseini, Seyed Amin;Ruiz-Garcia, Jorge;Massumi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.395-408
    • /
    • 2019
  • Engineered structures built in seismic-prone areas are affected by aftershocks in addition to mainshocks. Although aftershocks generally are lower in magnitude than that of the mainshocks, some aftershocks may have higher intensities; thus, structures should be able to withstand the effect of strong aftershocks as well. This seismic scenario arises for far-field mainshock along with near-field aftershocks. In this study, four 2D reinforced concrete (RC) frames with different numbers of stories were designed in accordance with the current Iranian seismic design code. As a way to evaluate the seismic response of the case-study RC frames, the inter-story drift ratio (IDR) demand, the residual inter-story drift ratio (RIDR) demand, the Park-Ang damage index, and the period elongation ratio can be useful engineering demand parameters for evaluating their seismic performance under mainshock-aftershock sequences. The frame models were analyzed under a set of far-field mainshock, near-fault aftershocks seismic sequences using nonlinear dynamic time-history analysis to investigate the relationship among IDR, RIDR, Park-Ang damage index and period ratio experienced by the frames. The results indicate that the growth of IDR, RIDR, Park-Ang damage index, and period ratio in high-rise and short structures under near-fault aftershocks were significant. It is evident that engineers should consider the effects of near-fault aftershocks on damaged frames that experience far-field mainshocks as well.

Decomposed "Spatial and Temporal" Convolution for Human Action Recognition in Videos

  • Sediqi, Khwaja Monib;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.455-457
    • /
    • 2019
  • In this paper we study the effect of decomposed spatiotemporal convolutions for action recognition in videos. Our motivation emerges from the empirical observation that spatial convolution applied on solo frames of the video provide good performance in action recognition. In this research we empirically show the accuracy of factorized convolution on individual frames of video for action classification. We take 3D ResNet-18 as base line model for our experiment, factorize its 3D convolution to 2D (Spatial) and 1D (Temporal) convolution. We train the model from scratch using Kinetics video dataset. We then fine-tune the model on UCF-101 dataset and evaluate the performance. Our results show good accuracy similar to that of the state of the art algorithms on Kinetics and UCF-101 datasets.

Comparison of Nonlinear Analysis Programs for Small-size Reinforced Concrete Buildings II (소규모 철근콘크리트 건축물을 위한 비선형해석 프로그램 비교 II)

  • Yoo, Changhwan;Kim, Taewan;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.229-238
    • /
    • 2015
  • For small-size reinforce-concrete buildings, Midas Gen, OpenSees, and Perform-3D, which are structural analysis programs that are most popularly used at present, were applied for nonlinear static pushover analysis, and then difference between those programs was analyzed. Example buildings were limited to 2-story frames with irregular shaped walls. Analysis result showed that there were more differences than for frames only and frames with rectangular walls, but it was not so significant. Nevertheless, the capacity curve were different in some buildings, which is attributed to shape and location of walls, and feature of the analysis program. Especially, selection of automatic or manual input in Midas Gen, or nonlinear wall elements in Perform3D can affect the capacity curve and performance of the buildings. Therefore, the program users should understand the feature of the program well, and then conduct performance assessment. The result of this study is limited to low-story buildings so that it should be noted that it is possible to get different results for mid- to high-rise buildings.

A controlled destruction and progressive collapse of 2D reinforced concrete frames

  • El houcine, Mourid;Said, Mamouri;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.111-139
    • /
    • 2018
  • A successful methodology for modelling controlled destruction and progressive collapse of 2D reinforced concrete frames is presented in this paper. The strategy is subdivided into several aspects including the failure mechanism creation, and dynamic motion in failure represented with multibody system (MBS) simulation that are used to jointly capture controlled demolition. First phase employs linear elasto-plastic analysis with isotropic hardening along with softening plastic hinge concept to investigate the complete failure of structure, leading to creation of final failure mechanism that behaves like MBS. Second phase deals with simulation and control of the progressive collapse of the structure up to total demolition, using the nonlinear dynamic analysis, with conserving/decaying energy scheme which is performed on MBS. The contact between structure and ground is also considered in simulation of collapse process. The efficiency of the proposed methodology is proved with several numerical examples including six story reinforced concrete frame structures.

3D Panoramic Mosaiciking to Silppress the Ghost Effect at Long Distance Scene for Urban Area Visualization (도심영상 입체 가시화 중 발생하는 원거리 환영현상 해소를 위한 3차원 파노라믹 모자이크)

  • Chon, Jae-Choon;Kim, Hyong-Suk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.87-94
    • /
    • 2005
  • 3D image mosaicking is useful for 3D visualization of the roadside scene of urban area by projecting 2D images to the 3D planes. When a sequence of images are filmed from a side-looking video camera passing long distance areas, the ghost effect in which same objects appear repeatively occurs. To suppress such ghost effect, the long distance range areas are detected by using the distance between the image frame and the 3D coordinate of tracked optical flows. The ghost effects are suppressed by projecting the part of image frames onto 3D multiple planes utilizing vectors passing the focal point of frames and a virtual focal point. The virtual focal point is calculated by utilizing the first and last frames of the long distance range areas. We demonstrate algorithm that creates efficient 3D Panoramic mosaics without the ghost effect at the long distance area.

Interactive Realtime Facial Animation with Motion Data (모션 데이터를 사용한 대화식 실시간 얼굴 애니메이션)

  • 김성호
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.569-578
    • /
    • 2003
  • This paper presents a method in which the user produces a real-time facial animation by navigating in the space of facial expressions created from a great number of captured facial expressions. The core of the method is define the distance between each facial expressions and how to distribute into suitable intuitive space using it and user interface to generate realtime facial expression animation in this space. We created the search space from about 2,400 raptured facial expression frames. And, when the user free travels through the space, facial expressions located on the path are displayed in sequence. To visually distribute about 2,400 captured racial expressions in the space, we need to calculate distance between each frames. And we use Floyd's algorithm to get all-pairs shortest path between each frames, then get the manifold distance using it. The distribution of frames in intuitive space apply a multi-dimensional scaling using manifold distance of facial expression frames, and distributed in 2D space. We distributed into intuitive space with keep distance between facial expression frames in the original form. So, The method presented at this paper has large advantage that free navigate and not limited into intuitive space to generate facial expression animation because of always existing the facial expression frames to navigate by user. Also, It is very efficient that confirm and regenerate nth realtime generation using user interface easy to use for facial expression animation user want.

  • PDF

Simplified robustness assessment of steel framed structures under fire-induced column failure

  • Jiang, Binhui;Li, Guo-Qiang;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.199-213
    • /
    • 2020
  • This paper proposes a Global-Local Analysis Method (GLAM) to assess the progressive collapse of steel framed structures under fire-induced column failure. GLAM obtains the overall structural response by combining dynamic analysis of the heated column (local) with static analysis of the overall structure (global). Test results of two steel frames which explicitly consider the dynamic effect during fire-induced column failure were employed to validate the proposed GLAM. Results show that GLAM gives reasonable predictions to the test frames in terms of both whether to collapse and the displacement verse temperature curves. Besides, several case studies of a two-dimensional (2D) steel frame and a three-dimensional (3D) steel frame with concrete slabs were conducted by using GLAM. Results show that GLAM gives the same collapse predictions to the studied cases with nonlinear dynamic analysis of the whole structure model. Compared with nonlinear dynamic analysis of the whole structure model, GLAM saves approximately 70% and 99% CPU time for the cases of 2D and 3D steel frame, respectively. Results also show that the load level of a structure has notable effects on the restraint condition of a heated column in the structure.

Effect of modeling assumptions on the seismic behavior of steel buildings with perimeter moment frames

  • Reyes-Salazar, Alfredo;Soto-Lopez, Manuel Ernesto;Bojorquez-Mora, Eden;Lopez-Barraza, Arturo
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.183-204
    • /
    • 2012
  • Several issues regarding the structural idealization of steel buildings with perimeter moment resisting steel frames (MRSFs) and interior gravity frames (GFs) are studied. Results indicate that the contribution of GFs to the lateral structural resistance may be significant. The contribution increases when the stiffness of the connection of the GFs is considered and is larger for inelastic than for elastic behavior. The interstory shears generally increase when the connections stiffness is taken into account. Resultant stresses at some base columns of MRSFs also increase in some cases but to a lesser degree. For columns of the GFs, however, the increment is significant. Results also indicate that modeling the building as planes frames may result in larger interstory shears and displacements and resultant stresses than those obtained from the more realistic 3-D formulation. These differences may be much larger when semi-rigid (SR) connections are considered. The conservativism is more for resultant stresses. The differences observed in the behaviour of each structural representation are mainly due to a) the elements that contribute to strength and stiffness and b) the dynamics characteristics of each structural representation. It is concluded that, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis, the GFs should be considered as part of the lateral resistance system, and the stiffness of the connections should be included in the design of the GFs. Otherwise, the capacity of gravity frames may be overestimated while that of MRSFs may be underestimated.