• Title/Summary/Keyword: 2D displacement field

Search Result 131, Processing Time 0.023 seconds

Transverse Flux Linear Machine with High Thrust for Direct Drive Applications

  • Chang, Jung-Hwan;Kim, Ji-Won;Kang, Do-Hyun;Bang, Deok-Je
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.64-69
    • /
    • 2010
  • This paper describes the development of a novel transverse flux linear motor (TFLM) excited by permanent magnets (PMs). It combines the advantage of two different TFLMs and produces high thrust with reduced normal force. The magnetic field is analyzed by combining the three-dimensional (3D) equivalent magnetic circuit network (EMCN) method with 2D finite element analysis. The experimental findings of the prototype motors are in good agreements with the analysis results, and demonstrate the potential of the proposed motor as a direct drive requiring relatively long displacement of a mover.

Monitoring of the Natural Terrain Behavior Using the Terrestrial LiDAR (지상라이다 자료를 이용한 자연사면의 변위 모니터링)

  • Park, Jae Kook;Lee, Sang Yun;Yang, In Tae;Kim, Dong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.191-198
    • /
    • 2010
  • The displacement of slope is a key factor in predicting the risk of a landslide. Therefore, the slope displacement should be continuously observed with high accuracy. Recently, high-tech equipment such as optical fiber sensor, GPS, total station and measuring instrument have been used. However, such equipment is poorly used in fields due to economics, environment, convenience and management. Because of this, development of substantial observational techniques for varied slope observation and field applications is needed. This study analyzed the possibility of terrestrial LiDAR for slope monitoring and suggested it as information-obtaining technique for slope investigation and management. For that, this study evaluated the monitoring accuracy of terrestrial LiDAR and performed GRID analysis to read the displacement area with the naked eye. In addition, it suggested a methodology for slope monitoring.

Dynamic analysis of 3-D structures with adaptivity in RBF of dual reciprocity BEM

  • Razaee, S.H.;Noorzad, A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.117-134
    • /
    • 2008
  • A new adaptive dual reciprocity boundary element method for dynamic analysis of 3-D structures is presented in this paper. It is based on finding the best approximation function of a radial basis function (RBF) group $f=r^n+c$ which minimize the error of displacement field expansion. Also, the effects of some parameters such as the existence of internal points, number of RBF functions and position of collocation nodes in discontinuous elements are investigated in this adaptive procedure. Three numerical examples show improvement in dynamic response of structures with adaptive RBF in dual reciprocity with respect to ordinary BEM.

3D Image Analysis for Digital Restoration and Structural Stability Evaluation of Stone Cultural Heritage: Five-storied Magoksa Temple Stone Pagoda (석조문화재 디지털복원 및 구조안정성 평가를 위한 3차원 영상분석: 마곡사오층석탑)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2009
  • This study was focused on digital restoration and structural stability evaluation applying 3D scanning system of five-storied Magoksa temple stone pagoda in Gongju. For these, the digital restoration of the pagoda was completed using laser scan data which is measured 16 directions and data processing program of 7 stages. As a result of digital restoration, the overall height and width of stone properties showed a little difference in directions and the width of roof stones appeared very high difference of each floor. The width of pagoda body become smaller to the fifth floor, but gradual decrease rate showed irregular characteristics. Also, as result of 3D image analysis for structural stability evaluation, the displacement occurred toward northwest in second body stone to upper final stone except for central axis of the first body stone which inclines toward southwest. Such 3D image analysis is required quantification of survey method and should be applied to various field such as quantitative damage maps in order to utilize a conservation of stone cultural heritages, continuously.

  • PDF

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter

  • Chatzi, Eleni N.;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.295-328
    • /
    • 2015
  • In recent years the monitoring of structural behavior through acquisition of vibrational data has become common practice. In addition, recent advances in sensor development have made the collection of diverse dynamic information feasible. Other than the commonly collected acceleration information, Global Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for the successful monitoring and control of structural systems especially when aiming at real-time estimation. This task is not a straightforward one as measurements are inevitably corrupted with some percentage of noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is proposed for correcting the "drift effect" in displacement or rotation estimates in an online manner, i.e., on the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative example of a single degree of freedom linear oscillator is examined, where availability of acceleration measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the torsional identification of a tall tower structure, where acceleration measurements are obtained at a high sampling rate and non-collocated GPS displacement measurements are assumed available at a lower sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data sampled at different rates.

A Study on Application of Removable Soil Nail Walls (제거식 쏘일네일 벽체의 적용성에 관한 연구)

  • 김홍택;강인규;정성필;박사원;박시삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.481-488
    • /
    • 1999
  • Recently a removable soil nail is demanded due to problems beyond of economical and engineering purpose. In this study controlled displacement and controlled force field pull-out tests are carried out 7 times in order to evaluate short-term and long-term pull-out characteristics of the removable soil nail. For evaluating application of removable soil nailing system, bending tests of removable soil nails and tensile tests of fixed sockets are carried out. In the removable soil nailing system, the predicted horizontal displacements from FLAC-2D are also compared with the field measurements occurred in stepwise excavation. And approach for the stability analysis of removable soil nailing system after removed is proposed.

  • PDF

Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates

  • Bendaho, Boudjema;Belabed, Zakaria;Bourada, Mohamed;Benatta, Mohamed Atif;Bourada, Fouad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.277-292
    • /
    • 2019
  • In this present paper, a new two dimensional (2D) and quasi three dimensional (quasi-3D) nonlocal shear deformation theories are formulated for free vibration analysis of size-dependent functionally graded (FG) nanoplates. The developed theories is based on new description of displacement field which includes undetermined integral terms, the issues in using this new proposition are to reduce the number of unknowns and governing equations and exploring the effects of both thickness stretching and size-dependency on free vibration analysis of functionally graded (FG) nanoplates. The nonlocal elasticity theory of Eringen is adopted to study the size effects of FG nanoplates. Governing equations are derived from Hamilton's principle. By using Navier's method, analytical solutions for free vibration analysis are obtained through the results of eigenvalue problem. Several numerical examples are presented and compared with those predicted by other theories, to demonstrate the accuracy and efficiency of developed theories and to investigate the size effects on predicting fundamental frequencies of size-dependent functionally graded (FG) nanoplates.

Some properties of the Green's function of simplified elastodynamic problems

  • Sanchez-Sesma, Francisco J.;Rodriguez-Castellanos, Alejandro;Perez-Gavilan, Juan J.;Marengo-Mogollon, Humberto;Perez-Rocha, Luis E.;Luzon, Francisco
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.507-518
    • /
    • 2012
  • It is now widely accepted that the resulting displacement field within elastic, inhomogeneous, anisotropic solids subjected to equipartitioned, uniform illumination from uncorrelated sources, has intensities that follow diffusion-like equations. Typically, coda waves are invoked to illustrate this concept. These waves arrive later as a consequence of multiple scattering and appear at "the tail" (coda, in Latin) of seismograms and are usually considered an example of diffuse field. It has been demonstrated that the average correlations of motions within a diffuse field, in frequency domain, is proportional to the imaginary part of Green's function tensor. If only one station is available, the average autocorrelation is equal to the average squared amplitudes or the average power spectrum and this gives the Green's function at the source itself. Several works address this point from theoretical and experimental point of view. However, a complete and explicit analytical description is lacking. In this work we study analytically some properties of the Green's function, specifically the imaginary part of Green's function for 2D antiplane problems. This choice is guided by the fact that these scalar problems have a closed analytical solution (Kausel 2006). We assume the diffusiveness of the field and explore its analytical consequences.

A Study on Reinforcement Method of Concrete Block for Direct Fixation Tracks on Serviced Light Rail Transit (공용중인 경전철 직결 궤도 콘크리트 도상블록의 보강 방안 연구)

  • Jung-Youl Choi;You-Song Kang;Dae-Hee Ahn;Jae-Min Han;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.633-640
    • /
    • 2023
  • In this study, numerical analysis was performed based on field investigation to derive an appropriate reinforcement method by analyzing the displacement behavior characteristics of concrete blocks generated in the direct fixation track on the bridges of the serviced light rail transit. The track of this study was a direct fixation track on a sharp curved track, and the problem of movement of the concrete blocks installed on the bridge deck in the longitudinal and lateral directions occurred. In this study, based on the finite element model using 3D solid elements, the behavior of the direct fixation track that could be occurred under operating load conditions was analyzed. In addition, the reinforcement effect of various reinforcement methods was analyzed. As a result of analyzing the lateral displacement before and after reinforcement, it was analyzed that the maximum lateral displacement after reinforcement under the extreme lateral wheel loads significantly decreased to about 3% (about 0.1mm) compared to before reinforcement. In addition, as a result of examining the generated stress of the filling mortar, bridge decks, and reinforcing bar, it was analyzed that all of them secured a sufficient safety factor of 2.6 or higher, and the optimal conditions for the reinforcement method were derived. Therefore, it is judged that the number of anchoring reinforcements and symmetrical anchor placement reviewed in this study will be effective in controlling the occurrence of lateral displacement of concrete blocks and securing the structural integrity of bridges and concrete blocks.