• Title/Summary/Keyword: 2D depth map

Search Result 170, Processing Time 0.025 seconds

2D-to-3D Conversion System using Depth Map Enhancement

  • Chen, Ju-Chin;Huang, Meng-yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1159-1181
    • /
    • 2016
  • This study introduces an image-based 2D-to-3D conversion system that provides significant stereoscopic visual effects for humans. The linear and atmospheric perspective cues that compensate each other are employed to estimate depth information. Rather than retrieving a precise depth value for pixels from the depth cues, a direction angle of the image is estimated and then the depth gradient, in accordance with the direction angle, is integrated with superpixels to obtain the depth map. However, stereoscopic effects of synthesized views obtained from this depth map are limited and dissatisfy viewers. To obtain impressive visual effects, the viewer's main focus is considered, and thus salient object detection is performed to explore the significance region for visual attention. Then, the depth map is refined by locally modifying the depth values within the significance region. The refinement process not only maintains global depth consistency by correcting non-uniform depth values but also enhances the visual stereoscopic effect. Experimental results show that in subjective evaluation, the subjectively evaluated degree of satisfaction with the proposed method is approximately 7% greater than both existing commercial conversion software and state-of-the-art approach.

A Depth-map Coding Method using the Adaptive XOR Operation (적응적 배타적 논리합을 이용한 깊이정보 맵 코딩 방법)

  • Kim, Kyung-Yong;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.274-292
    • /
    • 2011
  • This paper proposes an efficient coding method of the depth-map which is different from the natural images. The depth-map are so smooth in both inner parts of the objects and background, but it has sharp edges on the object-boundaries like a cliff. In addition, when a depth-map block is decomposed into bit planes, the characteristic of perfect matching or inverted matching between bit planes often occurs on the object-boundaries. Therefore, the proposed depth-map coding scheme is designed to have the bit-plane unit coding method using the adaptive XOR method for efficiently coding the depth-map images on the object-boundary areas, as well as the conventional DCT-based coding scheme (for example, H.264/AVC) for efficiently coding the inside area images of the objects or the background depth-map images. The experimental results show that the proposed algorithm improves the average bit-rate savings as 11.8 % ~ 20.8% and the average PSNR (Peak Signal-to-Noise Ratio) gains as 0.9 dB ~ 1.5 dB in comparison with the H.264/AVC coding scheme. And the proposed algorithm improves the average bit-rate savings as 7.7 % ~ 12.2 % and the average PSNR gains as 0.5 dB ~ 0.8 dB in comparison with the adaptive block-based depth-map coding scheme. It can be confirmed that the proposed method improves the subjective quality of synthesized image using the decoded depth-map in comparison with the H.264/AVC coding scheme. And the subjective quality of the proposed method was similar to the subjective quality of the adaptive block-based depth-map coding scheme.

Obstacle Detection for Generating the Motion of Humanoid Robot (휴머노이드 로봇의 움직임 생성을 위한 장애물 인식방법)

  • Park, Chan-Soo;Kim, Doik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1115-1121
    • /
    • 2012
  • This paper proposes a method to extract accurate plane of an object in unstructured environment for a humanoid robot by using a laser scanner. By panning and tilting 2D laser scanner installed on the head of a humanoid robot, 3D depth map of unstructured environment is generated. After generating the 3D depth map around a robot, the proposed plane extraction method is applied to the 3D depth map. By using the hierarchical clustering method, points on the same plane are extracted from the point cloud in the 3D depth map. After segmenting the plane from the point cloud, dimensions of the planes are calculated. The accuracy of the extracted plane is evaluated with experimental results, which show the effectiveness of the proposed method to extract planes around a humanoid robot in unstructured environment.

Depth-Map Generation using Fusion of Foreground Depth Map and Background Depth Map (전경 깊이 지도와 배경 깊이 지도의 결합을 이용한 깊이 지도 생성)

  • Kim, Jin-Hyun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.275-278
    • /
    • 2012
  • 본 논문에서 2D-3D 자동 영상 변환을 위하여 2D 상으로부터 깊이 지도(depth map)을 생성하는 방법을 제안한다. 제안하는 방법은 보다 정확한 깊이 지도 생성을 위해 영상의 전경 깊이 지도(foreground depth map)와 배경 깊이 지도(background depth map)를 각각 생성 한 후 결합함으로써 보다 정확한 깊이 지도를 생성한다. 먼저, 전경 깊이 지도를 생성하기 위해서 라플라시안 피라미드(laplacian pyramid)를 이용하여 포커스/디포커스 깊이 지도(focus/defocus depth map)를 생성한다. 그리고 블록정합(block matching)을 통해 획득한 움직임 시차(motion parallax)를 이용하여 움직임 시차 깊이 지도를 생성한다. 포커스/디포커스 깊이 지도는 평탄영역(homogeneous region)에서 깊이 정보를 추출하지 못하고, 움직임 시차 깊이 지도는 움직임 시차가 발생하지 않는 영상에서 깊이 정보를 추출하지 못한다. 이들 깊이 지도를 결합함으로써 각 깊이 지도가 가지는 문제점을 해결하였다. 선형 원근감(linear perspective)와 선 추적(line tracing) 방법을 적용하여 배경깊이 지도를 생성한다. 이렇게 생성된 전경 깊이 지도와 배경 깊이 지도를 결합하여 보다 정확한 깊이 지도를 생성한다. 실험 결과, 제안하는 방법은 기존의 방법들에 비해 더 정확한 깊이 지도를 생성하는 것을 확인할 수 있었다.

  • PDF

Auto-Covariance Analysis for Depth Map Coding

  • Liu, Lei;Zhao, Yao;Lin, Chunyu;Bai, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3146-3158
    • /
    • 2014
  • Efficient depth map coding is very crucial to the multi-view plus depth (MVD) format of 3-D video representation, as the quality of the synthesized virtual views highly depends on the accuracy of the depth map. Depth map contains smooth area within an object but distinct boundary, and these boundary areas affect the visual quality of synthesized views significantly. In this paper, we characterize the depth map by an auto-covariance analysis to show the locally anisotropic features of depth map. According to the characterization analysis, we propose an efficient depth map coding scheme, in which the directional discrete cosine transforms (DDCT) is adopted to substitute the conventional 2-D DCT to preserve the boundary information and thereby increase the quality of synthesized view. Experimental results show that the proposed scheme achieves better performance than that of conventional DCT with respect to the bitrate savings and rendering quality.

Generation of Stereoscopic Image from 2D Image based on Saliency and Edge Modeling (관심맵과 에지 모델링을 이용한 2D 영상의 3D 변환)

  • Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.368-378
    • /
    • 2015
  • 3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. The 3D conversion plays an important role in the augmented functionality of three-dimensional television (3DTV), because it can easily provide 3D contents. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) rendering for producing a stereoscopic image. However except some particular images, the existence of depth cues is rare so that the consistent quality of a depth map cannot be accordingly guaranteed. Therefore, it is imperative to make a 3D conversion method that produces satisfactory and consistent 3D for diverse video contents. From this viewpoint, this paper proposes a novel method with applicability to general types of image. For this, saliency as well as edge is utilized. To generate a depth map, geometric perspective, affinity model and binomic filter are used. In the experiments, the proposed method was performed on 24 video clips with a variety of contents. From a subjective test for 3D perception and visual fatigue, satisfactory and comfortable viewing of 3D contents was validated.

3D Map Generation System for Indoor Autonomous Navigation (실내 자율 주행을 위한 3D Map 생성 시스템)

  • Moon, SungTae;Han, Sang-Hyuck;Eom, Wesub;Kim, Youn-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.140-148
    • /
    • 2012
  • For autonomous navigation, map, pose tracking, and finding the shortest path are required. Because there is no GPS signal in indoor environment, the current position should be recognized in the 3D map by using image processing or something. In this paper, we explain 3D map creation technology by using depth camera like Kinect and pose tracking in 3D map by using 2D image taking from camera. In addition, the mechanism of avoiding obstacles is discussed.

Depth-map coding using the block-based decision of the bitplane to be encoded (블록기반 부호화할 비트평면 결정을 이용한 깊이정보 맵 부호화)

  • Kim, Kyung-Yong;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.232-235
    • /
    • 2010
  • This paper proposes an efficient depth-map coding method. The adaptive block-based depth-map coding method decides the number of bit planes to be encoded according to the quantization parameters to obtain the desired bit rates. So, the depth-map coding using the block-based decision of the bit-plane to be encoded proposes to free from the constraint of the quantization parameters. Simulation results show that the proposed method, in comparison with the adaptive block-based depth-map coding method, improves the average BD-rate savings by 3.5% and the average BD-PSNR gains by 0.25dB.

A Study on 2D-3D Image Conversion using Depth Map Chart Analysis (깊이정보 지도 분석을 통한 2D-3D 영상 변환 연구)

  • Kim, In-Su;Kim, Hyung-Taek;Youn, Joo-Sang;Oh, Se-Woong;Seo, in-Seok;Kim, Nam-Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.205-208
    • /
    • 2015
  • 3D 입체영상을 제작하기 위해서는 2D 영상제작에 비해 오랜 제작 기간과 많은 비용이 발생한다. 비용 절감을 위해 기존의 2D 영상을 3D 입체영상으로 변환하는 연구가 진행되고 있다. 2D 영상을 3D 입체영상으로 변환하는 방식은 자동변환방법과 수동변환방법으로 구분할 수 있으며, 고품질의 2D-3D 변환 영상을 획득하기 위해서는 깊이정보 지도(Depth map chart)를 활용한 수동변환 방법을 많이 사용되고 있다. 하지만 2D-3D 수동변환에 사용되는 깊이정보 지도의 정량적 분석 데이터가 부족하여 사용자가 변환한 이미지에 대한 정확한 기준 깊이값 설정이 어려운 단점이 있다. 본 논문에서는 깊이정보 지도의 깊이값 정보에 대한 정량적 분석 데이터를 바탕으로 한 2D-3D 수동변환 변화범위를 제시함으로써 적정한 영상 변화를 유도할 수 있도록 한다.

  • PDF

2D to 3D Conversion Using The Machine Learning-Based Segmentation And Optical Flow (학습기반의 객체분할과 Optical Flow를 활용한 2D 동영상의 3D 변환)

  • Lee, Sang-Hak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • In this paper, we propose the algorithm using optical flow and machine learning-based segmentation for the 3D conversion of 2D video. For the segmentation allowing the successful 3D conversion, we design a new energy function, where color/texture features are included through machine learning method and the optical flow is also introduced in order to focus on the regions with the motion. The depth map are then calculated according to the optical flow of segmented regions, and left/right images for the 3D conversion are produced. Experiment on various video shows that the proposed method yields the reliable segmentation result and depth map for the 3D conversion of 2D video.