• Title/Summary/Keyword: 2D contour

Search Result 315, Processing Time 0.035 seconds

An Optimum 2.5D Contour Parallel Tool Path (최적 2.5D 윤곽 평행 공구경로)

  • Kim, Hyun-Chul;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.35-42
    • /
    • 2006
  • Although the conventional contour parallel tool path obtained from geometric information has been successful to make desirable shape, it seldom consider physical process concerns like cutting forces and chatters. In this paper, an optimized contour parallel path, which maintains constant MRR(material removal rates) at all time, is introduced and the result is verified. The optimized tool path is based on a conventional contour parallel tool path. Additional tool path segments are appended to the basic tool path in order to achieve constant cutting forces and to avoid chatter vibrations at the entire machining area. The algorithm has been implemented for two dimensional contiguous end milling operations with flat end mills, and cutting tests were conducted to verify the significance of the proposed method.

A 2D FLIR Image-based 3D Target Recognition using Degree of Reliability of Contour (윤곽선의 신뢰도를 고려한 2차원 적외선 영상 기반의 3차원 목표물 인식 기법)

  • 이훈철;이청우;배성준;이광연;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2359-2368
    • /
    • 1999
  • In this paper we propose a 2D FLIR image-based 3D target recognition system which performs group-to-ground vehicle recognition using the target contour and its degree of reliability extracted from FLIR image. First we extract target from background in FLIR image. Then we define contour points of the extracted target which have high edge gradient magnitude and brightness value as reliable contour point and make reliable contour by grouping all reliable contour points. After that we extract corresponding reliable contours from model contour image and perform comparison between scene and model features which are calculated by DST(discrete sine transform) of reliable contours. Experiment shows that the proposed algorithm work well and even in case of imperfect target extraction it showed better performance then conventional 2D contour-based matching algorithms.

  • PDF

Construction of Branching Surface from 2-D Contours

  • Jha, Kailash
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • In the present work, an attempt has been made to construct branching surface from 2-D contours, which are given at different layers and may have branches. If a layer having more than one contour and corresponds to contour at adjacent layers, then it is termed as branching problem and approximated by adding additional points in between the layers. Firstly, the branching problem is converted to single contour case in which there is no branching at any layer and the final branching surface is obtained by skinning. Contours are constructed from the given input points at different layers by energy-based B-Spline approximation. 3-D curves are constructed after adding additional points into the contour points for all the layers having branching problem by using energy-based B-Spline formulation. Final 3-D surface is obtained by skinning 3-D curves and 2-D contours. There are three types of branching problems: (a) One-to-one, (b) One-to-many and (c) Many-to-many. Oneto-one problem has been done by plethora of researchers based on minimizations of twist and curvature and different tiling techniques. One-to-many problem is the one in which at least one plane must have more than one contour and have correspondence with the contour at adjacent layers. Many-to-many problem is stated as m contours at i-th layer and n contours at (i+1)th layer. This problem can be solved by combining one-to-many branching methodology. Branching problem is very important in CAD, medical imaging and geographical information system(GIS).

Automatic Detection of Left Ventricular Contour from 2-D Echocardiograms using Fuzzy Hough Transform (퍼지 Hough 변환에 의한 2-D 심초음파도에서의 좌심실 윤곽 자동검출)

  • ;K.P
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.115-124
    • /
    • 1992
  • An algorithm has been proposed for the automatic detection of optimal epiand endocardial left ventricular borders from 2-D short axis echocardiogram which is degraded by noise and echo drop out. For the implementation of the algorithm, we modified Ballard's Generalized Hough Transform which can be applicable only for deterministic object border, and newly proposed Fuzzy Hough Transform method. The algorithm presented here allows detection of object whose exact shapes are unknown. The algorithm only requires an approximate model of target object based on anatomical data. To detect the approximate epicardial contour of left ventricle, Fuzzy Hough Transform was applied to the echocardiogram. The optimal epicardial contour was founded by using graph searching method which contains cost function analysis process. Using this optimal epicardial contour and average thickness imformation of left ventricular wall, the approximate endocardial line was founded, and graph searching method was also used to detect optimal endocardial contour.

  • PDF

Unscented Kalman Snake for 3D Vessel Tracking

  • Lee, Sang-Hoon;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 2015
  • Purpose In this paper, we propose a robust 3D vessel tracking algorithm by utilizing an active contour model and unscented Kalman filter which are the two representative algorithms on segmentation and tracking. Materials and Methods The proposed algorithm firstly accepts user input to produce an initial estimate of vessel boundary segmentation. On each Computed Tomography Angiography (CTA) slice, the active contour is applied to segment the vessel boundary. After that, the estimation process of the unscented Kalman filter is applied to track the vessel boundary of the current slice to estimate the inter-slice vessel position translation and shape deformation. Finally both active contour and unscented Kalman filter are inter-operated for vessel segmentation of the next slice. Results The arbitrarily shaped blood vessel boundary on each slice is segmented by using the active contour model, and the Kalman filter is employed to track the translation and shape deformation between CTA slices. The proposed algorithm is applied to the 3D visualization of chest CTA images using graphics hardware. Conclusion Through this algorithm, more opportunities, giving quick and brief diagnosis, could be provided for the radiologist before detailed diagnosis using 2D CTA slices, Also, for the surgeon, the algorithm could be used for surgical planning, simulation, navigation and rehearsal, and is expected to be applied to highly valuable applications for more accurate 3D vessel tracking and rendering.

3D Shape Reconstruction from 2D Cross-Sections (단면 정보를 이용한 형상의 재구성)

  • Park, H.J.;Kim, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 1993
  • The three dimensional(3D) shape reconstruction from two dimensional(2D) cross-sections can be completed through three main phases : the input compilation, the triangular grid formation, and the smooth surface construction. In the input compilation phase, the cross-sections are analyzed to exctract the input data required for the shape reconstruction. This data includes the number of polygonized contours per cross-section and the vertices defining each polygonized contour. In the triangular grid formation phase, a triangular grid, leading to a polyhedral approximations, is constructed by extracting all the information concerning contour links between two adjacent cross- sections and then performing the appropriate triangulation procedure for each contour link. In the smooth surface construction phase, a smooth composite surface interpolating all vertices on the triangular grid is constructed. Both the smooth surface and the polyhedral approximation can be used as reconstructed models of the object. This paper proposes a new method for reconstructing the geometric model of a 3D objdect from a sequence of planar contours representing 2D cross-sections of the objdect. The method includes the triangular grid formation algorithms for contour closing, one-to-one branching, and one-to-many braanching, and many-to-many branching. The shape reconstruction method has been implemented on a SUN workstation in C.

  • PDF

An Automatic Contour Detection of 2-D Echocardiograms Using the Heat Anisotropic Diffusion Method (Heat Anisotropic Diffusion 방법을 이용한 2차원 심초음파도에서 경계선 자동 검출)

  • 신동조;김동윤
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.79-90
    • /
    • 1996
  • In this paper, we present an automatic threshold decision method to detect the contour of the a 2-D echocarodiogram by using the Bayes estimator for the boundary-like region. The boundary-like region is constructed from the conduction coefficient of the heat anisotro-pic diffusion method which enforces the blurred image during the preprocessing step. For the boundary-like region, we used the Bayes estimator to select an optimal threshold level. From this threshold value, the contour of the echocardigrams can be detected automatically Finally by overlapping the estimated contour to the original echocardiogram, we can obtain the contour enforced ultrasound echocardiogram.

  • PDF

An Optimum 2.5D Contour Parallel Tool Path

  • Kim, Hyun-Chul;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • Although conventional contour parallel tool paths obtained from geometric information have successfully been used to produce desired shapes, they seldom consider physical process concerns such as cutting forces and chatter. In this paper, we introduce an optimized contour parallel path that maintains a constant material removal rate at all times. The optimized tool path is based on a conventional contour parallel tool path. Additional tool path segments are appended to the basic path to achieve constant cutting forces and to avoid chatter vibrations over the entire machining area. The algorithm was implemented for two-dimensional contiguous end milling operations with flat end mills, and cutting tests were conducted to verify the performance of the proposed method.

A Study on the COntour Machining of Text using CNC Laser Machine (CNC레이저 가공기를 이용한 활자체 가공에 관한 연구)

  • 구영회
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study is the machining of texture shapes by the contour fitting data. The hardware of the system comprises PC and scanning system, CO2 laser machine. There are four steps, (1) text image loading using scanning shapes or 2D image files, (2) generation of contour fitting data by the line and arc, cubic Bezier curve, (3) generation of NC code from the contouring fitting data, (4) machining by the DNC system. It is developed a software package, with which can conduct a micro CAM system of CNC laser machine in the PC without economical burden.

  • PDF

Automated Print Quality Assessment Method for 3D Printing AI Data Construction

  • Yoo, Hyun-Ju;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.223-234
    • /
    • 2022
  • The evaluation of the print quality of 3D printing has traditionally relied on manual work using dimensional measurements. However, the dimensional measurement method has an error value that depends on the person who measures it. Therefore, we propose the design of a new print quality measurement method that can be automatically measured using the field-of-view (FOV) model and the intersection over union (IoU) technique. First, the height information of the modeling is acquired from a camera; the output is measured by a sensor; and the images of the top and isometric views are acquired from the FOV model. The height information calculates the height ratio by calculating the percentage of modeling and output, and compares the 2D contour of the object on the image using the FOV model. The contour of the object is obtained from the image for 2D contour comparison and the IoU is calculated by comparing the areas of the contour regions. The accuracy of the automated measurement technique for determining, which derives the print quality value was calculated by averaging the IoU value corrected by the measurement error and the height ratio value.