• Title/Summary/Keyword: 2D cascade

Search Result 118, Processing Time 0.031 seconds

An MMIC X-band Darlington-Cascade Amplifier (단일 칩 X-band 달링톤-캐스코드 증폭기)

  • Kim, Young-Gi;Doo, Seok-Joo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.37-43
    • /
    • 2009
  • This paper describes a monolithic Darlington-cascade amplifier (DCA) operating at X-band, realized with a 0.35-micron SiGe bipolar process, which provides 45 GHz $f_T$. A conventional cascade amplifier was also designed on the same process and tested to establish a reference. Compared to the reference cascade amplifier, the proposed monolithic amplifier circuit exhibits an improved gain of 2.5 dB and improved output power 1-dB compression point of 5.2 dB with 72% wider bandwidth. Measurement results show 19.5 dB gain, 11.2 dBm 1-dB compression power, and 3.1 GHz bandwidth. These results demonstrate that the Darlington-cascade cell is an advantageous substitute to the conventional cascade amplifier.

INVERSE ENERGY CASCADE AND MAGNETIC HELICITY IN 3-DIMENSIONAL DRIVEN ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE

  • Kim, Hoon-Kyu;Cho, Jun-Hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • We present numerical simulations of inverse energy cascade and in driven three-dimensional (3D) electron magnetohydrodynamic (EMHD) turbulence. It has been known that inverse energy cascade only occurs in two-dimensional (2D) turbulence. However, we demonstrate that inverse energy cascade occurs in 3D driven EMHD turbulence. When magnetic helicity is injected on a small-scale, magnetic energy goes up to larger scales. The energy spectrum clearly shows inverse energy cascade. At the same time, magetic helicity spectrum also shows that the helicity goes up to larger scales. We obviously confirm inverse energy cascade. Net magnetic helicity for scales larger than the driving scale shows linear growth, and magnetic energy shows non-linear growth. On the other hand, when we drived turbulence without magnetic helicity, we do not observe inverse energy cascade.

  • PDF

Cavitation in Fuel Pump with 2D Cascade Modeling (2차원 Cascade에 의한 연료펌프의 공동발생 해석)

  • Quangnha, Thai;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.483-489
    • /
    • 2009
  • A CFD code was developed to investigate the inception of cavitation around impeller blades of centrifugal fuel pump using two dimensional cascade modeling. With the verification test for numerical validity of the developed code, the prediction of the onset of cavitation was made for the configuration of a newly designed KHP fuel pump. The calculation results show impeller design was free of cavitation if the pump operates within the operational temperature and rotational speed range. However, the cavitation would be relatively easy to occur at off design region of fuel pump where the rotational speed is higher than design limit. Specially, the onset of cavitation is sensitively dependent on the increase in fuel temperature while the decrease in temperature will reduce the possibility of cavitation inception in the pump.

Effects of Rotor-Stator Blade Count Ratio on the Unsteady Aerodynamic Characteristics of a Cascade (동익과 정익의 블레이드 개수 비가 익렬의 비정상 공기역학적 특성에 미치는 영향에 대한 수치해석적 연구)

  • Kang D. J.;Jeon H. J.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.41-50
    • /
    • 2001
  • Effects of rotor-stator blade count ratio on the unsteady aerodynamic characteristics of a cascade was studied by using a Navier-Stokes code. Present Navier-Stokes code is a parallel code and works on a multi-cpu machine. It is based on the SIMPLE algorithm and uses QUICK scheme for convection terms and second order back difference for all temporal derivatives. Computations were carried out for two cases : case 1 is for 3 stator cascade passages subjected to two upstream wakes while case 2 is for 2 stator cascade passages subjected to three upstream wakes. Numerical solutions show that rotor-stator blade count ratio plays a significant role in the unsteady aerodynamic characteristics of the stator cascade. Case 2 shows smaller unsteady fluctuation than case 1, even if they show the same time averaged value. The smaller fluctuation of case 2 is believed due to strong interaction between unsteady vortices. The unsteady lift variation of case 2 is shown to have many high frequency fluctuations as more unsteady vortices travel around the cascade. The unsteady turbulent kinetic energy due to the upstream wake is also shown to decay faster through the cascade passage than in the free stream.

  • PDF

The Unsteady Aerodynamic Characteristics of a Cascade subjected to a upstream wake with different pitch (다른 크기의 피치를 가진 후류장에 놓인 익렬의 비정상 공기역학적 특성에 관한 수치해석적 연구)

  • Jeon, H.J.;Kang, D.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.610-615
    • /
    • 2001
  • Effects of rotor-stator blade count ratio on the unsteady aerodynamic characteristics of a cascade was studied by using a Navier-Stokes code. Present Navier-Stokes code is a parallel code and works on a multi-cpu machine. It is based on the SIMPLE algorithm and uses QUICK scheme for convection terms and second order back difference for all temporal derivatives. Computations were carried out for two cases : case 1 is for 3 stator cascade passages subjected to two upstream wakes while case 2 is for 2 stator cascade passages subjected to three upstream wakes. Numerical solutions show that rotor-stator blade count ratio plays a significant role in the unsteady aerodynamic characteristics of the stator cascade. Case 2 shows smaller unsteady fluctuation than case 1, even if they show the same time averaged value. The smaller fluctuation of case 2 is believed due to strong interaction between unsteady vortices. The unsteady lift variation of case 2 is shown to have many high frequency fluctuations as more unsteady vortices travel around the cascade. The unsteady turbulent kinetic energy due to the upstream wake is also shown to decay faster through the cascade passage than in the free stream.

  • PDF

INVERSE ENERGY CASCADE AND IMBALANCED ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE

  • Kim, Hoonkyu;Cho, Junhyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.60.2-60.2
    • /
    • 2013
  • Electron magnetohydrodynamic (EMHD) turbulence provides a fluid-like description of small-scale magnetized plasmas. Most EMHD turbulence studies consider "balanced" EMHD turbulence. However, imbalanced EMHD turbulence has never been studied. In this study, we numerically study "imbalanced" EMHD turbulence. Imbalanced turbulence means that wave packets moving in one direction have high amplitudes or strong perturbations than the others. In driven imbalanced EMHD turbulence, non-zero magnetic helicity is injected. When magnetic helicity is injected at a scale, we expect to have inverse cascade of magnetic helicity, as well as magnetic energy, in three-dimensional (3D) EMHD turbulence. For no helicity injection, we do not observe inverse energy cascade. However, when magnetic helicity is injected, inverse cascade of magnetic helicity is clearly observed. Magnetic energy also shows inverse cascade. In EMHD turbulence, it is well known that magnetic energy on scales smaller than the energy injection scale is forward-cascading quantity and the magnetic energy spectrum follows a k^{-7/3} one. On the other hand, the inverse-cascading entity on scales larger than the energy injection scale is uncertain. If the magnetic helicity is inverse-cascading quantity, we will obtain a k^{-5/3} magnetic energy spectrum. In our simulations, we do observe energy spectrum consistant with k^{-5/3} on large scales. Therefore, we confirm that magnetic helicity indeed is the inverse-cascading entity in 3D EMHD turbulence.

  • PDF

Analysis of Heavy Water Separation Cascade Using Bithermal ${H_2}$/$H_2$O Exchange Process

  • Ahn, Do-Hee;Paek, Seung-Woo;Lee, Han-Soo;Hongsuk Chung;Masami Shimizu
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.571-576
    • /
    • 1996
  • The 3-stage cascade composed of the multisection-type bithermal $H_2$/$H_2O$-exchange columns was suggested for heavy water separation. In order to study the separation characteristics for the cascade, a matrix equation with 18 simultaneous equations was composed and the concentrations and flow rates were calculated for the all parts of the cascade. Product D-concentration decreases and extraction yield increases with increasing cut in each stage, which is one of the principal parameters of the separation characteristics. The optimization of the 3-stage cascade can be made by case study using the matrix equation.

  • PDF

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

Cascade Observer Design For n-th Order Derivatives of Measured Value (측정신호의 n차 도함수 추정을 위한 축차 관측기 설계)

  • Kim, Eung-Seok;Kim, You-Nam;Lee, Chang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.80-86
    • /
    • 2001
  • We design a sliding mode cascade observer to estimate derivatives of the output. In the 1st step of the observer, the output will be estimated, and the 1st order derivative of the output will be estimated via the 2nd step of the observer. Also, nth order derivative of the output will be estimated in the n+1th step of the observer. Exponential convergence of the estimation errors is shown under the bounded initial condition. Numerical examples will be presented to show the validity of the proposed observer.

  • PDF

A Numerical Analysis on Two-Dimensional Viscous Flowfield around a Steam Turbine Cascade (2차원 증기터어빈 익렬유동의 수치적 해석)

  • Kim Y. I.;Kim K. S.;Kim K. C.;Ha M. Y.;Park H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.64-69
    • /
    • 1995
  • A computer code for solving the Reynolds averaged full Navier-Stokes equations has bent developed for analysis of gas and steam turbine cascade flows with the option of using one of two types of turbulence model. One is the Baldwin-Lomax model and the other is standard $k-{\varepsilon}$ model. The numerical integration is based on the explicit four stage Runge-Kutta scheme and finite volume method. To be verified, the resulting code is applied to VKI turbine cascade and compared with the previous experimental results. Finally, the flowfield around a steam turbine cascade is analyzed. Comparisons with experimental data show that present numerical scheme is an accurate Navier-Stokes solver and can give very good predictions for both gas and steam turbine cascade flow.

  • PDF