• Title/Summary/Keyword: 2D approximation

Search Result 383, Processing Time 0.024 seconds

Extraction of Runoff Component from Stage in Tidal River Using Wavelet Transform (Wavelet Transform을 이용한 감조하천 수위자료의 유출성분 추출)

  • Oh, Chang-Ryeol;Lee, Jin-Won;Jung, Sung-Won;Park, Sung-Chun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.793-800
    • /
    • 2007
  • This research applied to Wavelet transform that have soft resolution time and frequency area for stage of Hadong2 station in order to extract to discharge component by rainfall and tidal level component by tide. Approximation component(A6) of last level for wavelet decomposition displayed the biggest energy value 87.77%, and detail component(D3) energy value was 10.70% with periodicity of semidiurnal tide type(about 12 hours). Also skewness, kurtosis values of D3 have similar to tidal level of Yeosu. Approximation component(A6), Detail component(D6, D5) for Hadong2 stage was runoff component, and detail component(D4, D3, D2) was tide component according to effect of tide.

Real-time Approximation of a Hydraulic Servo System Using a Recurrent Neural Network with 2-D Learning Algorithm (2차원 학습 회귀적 신경망을 이용한 전기.유압 서보시스템의 실시간 추종)

  • 정봉호;곽동훈;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.94-100
    • /
    • 2003
  • This paper presents the experiments on the approximation of a hydraulic servo system using a real time recurrent neural networks (RTRN) with time varying weights. In order to verify the effectiveness of the RTRN algorithm in hydraulic servo system, we design the experimental hydraulic system and implemented the real time approximation of system output. Experimental results show that approximated output of the RTRN well follows the position trajectory of the electro-hydraulic servo system. And also it is verified that the 2-D RNN can be implemented in sampling time even though high sampling frequency experimentally.

Low Power SAR ADC with Series Capacitor DAC (직렬 커패시터 D/A 변환기를 갖는 저전력 축차 비교형 A/D 변환기)

  • Lee, Jeong-Hyeon;Jin, Yu-Rin;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.90-97
    • /
    • 2019
  • The charge redistribution digital-to-analog converter(CR-DAC) is often used for successive approximation register analog-to-digital converter(SAR ADC) that requiring low power consumption and small circuit area. However, CR-DAC is required 2 to the power of N unit capacitors to generate reference voltage for successive approximation of the N-bit SAR ADC, and many unit capacitors occupy large circuit area and consume more power. In order to improve this problem, this paper proposes SAR ADC using series capacitor DAC. The series capacitor DAC is required 2(1+N) unit capacitors to generate reference voltage for successive approximation and charges only two capacitors of the reference generation block. Because of these structural characteristics, the SAR ADC using series capacitor DAC can reduce the power consumption and circuit area. Proposed SAR ADC was designed in CMOS 180nm process, and at 1.8V supply voltage and 500kS/s sampling rate, proposed 6-bit SAR ADC have signal-to-noise and distortion ratio(SNDR) of 36.49dB, effective number of bits(ENOB) of 5.77-bit, power consumption of 294uW.

Interference Mitigation Scheme by Antenna Selection in Device-to-Device Communication Underlaying Cellular Networks

  • Wang, Yuyang;Jin, Shi;Ni, Yiyang;Wong, Kai-Kit
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.429-438
    • /
    • 2016
  • In this paper, we investigate an interference mitigation scheme by antenna selection in device-to-device (D2D) communication underlaying downlink cellular networks. We first present the closed-form expression of the system achievable rate and its asymptotic behaviors at high signal-to-noise ratio (SNR) and the large antenna number scenarios. It is shown that the high SNR approximation increases with more antennas and higher ratio between the transmit SNR at the base station (BS) and the D2D transmitter. In addition, a tight approximation is derived for the rate and we reveal two thresholds for both the distance of the D2D link and the transmit SNR at the BS above which the underlaid D2D communication will degrade the system rate. We then particularize on the small cell setting where all users are closely located. In the small cell scenario, we show that the relationship between the distance of the D2D transmitting link and that of the D2D interfering link to the cellular user determines whether the D2D communication can enhance the system achievable rate. Numerical results are provided to verify these results.

Crosshole EM 2.5D Modeling by the Extended Born Approximation (확장된 Born 근사에 의한 시추공간 전자탐사 2.5차원 모델링)

  • Cho, In-Ky;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.127-135
    • /
    • 1998
  • The Born approximation is widely used for solving the complex scattering problems in electromagnetics. Approximating total internal electric field by the background field is reasonable for small material contrasts as long as scatterer is not too large and the frequency is not too high. However in many geophysical applications, moderate and high conductivity contrasts cause both real and imaginary part of internal electric field to differ greatly from background. In the extended Born approximation, which can improve the accuracy of Born approximation dramatically, the total electric field in the integral over the scattering volume is approximated by the background electric field projected to a depolarization tensor. The finite difference and elements methods are usually used in EM scattering problems with a 2D model and a 3D source, due to their capability for simulating complex subsurface conductivity distributions. The price paid for a 3D source is that many wavenumber domain solutions and their inverse Fourier transform must be computed. In these differential equation methods, all the area including homogeneous region should be discretized, which increases the number of nodes and matrix size. Therefore, the differential equation methods need a lot of computing time and large memory. In this study, EM modeling program for a 2D model and a 3D source is developed, which is based on the extended Born approximation. The solution is very fast and stable. Using the program, crosshole EM responses with a vertical magnetic dipole source are obtained and the results are compared with those of 3D integral equation solutions. The agreement between the integral equation solution and extended Born approximation is remarkable within the entire frequency range, but degrades with the increase of conductivity contrast between anomalous body and background medium. The extended Born approximation is accurate in the case conductivity contrast is lower than 1:10. Therefore, the location and conductivity of the anomalous body can be estimated effectively by the extended Born approximation although the quantitative estimate of conductivity is difficult for the case conductivity contrast is too high.

  • PDF

Minimum Mean Squared Error Invariant Designs for Polynomial Approximation

  • Joong-Yang Park
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.376-386
    • /
    • 1995
  • Designs for polynomial approximation to the unknown response function are considered. Optimality criteria are monotone functions of the mean squared error matrix of the least squares estimator. They correspond to the classical A-, D-, G- and Q-optimalities. Optimal first order designs are chosen from the invariant designs and then compared with optimal second order designs.

  • PDF

Performance Enhancement of a DVA-tree by the Independent Vector Approximation (독립적인 벡터 근사에 의한 분산 벡터 근사 트리의 성능 강화)

  • Choi, Hyun-Hwa;Lee, Kyu-Chul
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.151-160
    • /
    • 2012
  • Most of the distributed high-dimensional indexing structures provide a reasonable search performance especially when the dataset is uniformly distributed. However, in case when the dataset is clustered or skewed, the search performances gradually degrade as compared with the uniformly distributed dataset. We propose a method of improving the k-nearest neighbor search performance for the distributed vector approximation-tree based on the strongly clustered or skewed dataset. The basic idea is to compute volumes of the leaf nodes on the top-tree of a distributed vector approximation-tree and to assign different number of bits to them in order to assure an identification performance of vector approximation. In other words, it can be done by assigning more bits to the high-density clusters. We conducted experiments to compare the search performance with the distributed hybrid spill-tree and distributed vector approximation-tree by using the synthetic and real data sets. The experimental results show that our proposed scheme provides consistent results with significant performance improvements of the distributed vector approximation-tree for strongly clustered or skewed datasets.

3-D Crosshole EM Modeling by the Extended Born Approximations (확장된 Born근사법에 의한 시추공간 3차원 전자탐사 모델링)

  • Cho, In-Ky;Choi, Kyoung-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.3
    • /
    • pp.142-148
    • /
    • 1999
  • Three-dimensional electromagnetic modeling algorithm in homogeneous half-space was developed using the extended Born approximation to an electric field integral equation. To examine the performance of the extended Born approximation algorithm, the results were compared with those of the full integral equation results. For a crosshole source-receiver configuration, the agreement between the integral equation and the extended Born approximation was remarkable when the source frequency is lower than 20 kHz and conductivity contrast lower than 1:10. Beyond this conductivity contrast, the simulated results by the extended Born approximation exhibit a difference with respect to those by the integral equation. Therefore, the limit of accuracy lies below contrast of 1:10 in the extended Born approximation. Since for the source frequency range from 20 kHz to 100 kHz, however, the difference is relatively small, the extended Born approximation could be used for a reasonable 3-D EM modeling algorithm.

  • PDF

The study of electron transport coefficients in pure $CO_2$ by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 $CO_2$분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Kim, Ji-Yeon;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.164-167
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure $CO_2$ were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of $CO_2$ molecular gas. And for propriety of two-term approximation of Boltzmann equation analysis, the calculated results compared with the electron transport coefficients measured by Nakamura.

  • PDF

3-Dimensional Finite Element Analysis of Thermoforming Processes (열성형공정의 3차원 유한요소해석)

  • G.J. Nam;D.S. Son;Lee, J.W.
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.18-27
    • /
    • 1999
  • Predicting the deformation behaviors of sheets in thermoforming processes has been a daunting challenge due to the strong nonlinearities arising from very large deformations, mold-polymer contact condition and hyperelasticity constitutive equations. Nonlinear numerical analysis is always required to face this challenge especially for realistic processing conditions. In this study a 3-D algorithm and the membrane approximation are developed for thermoforming processes. The constitutive equation is expressed in terms of the 2nd Piola-Kirchhoff stress tensor and the Cauchy-Green deformation tensor. The 2-term Mooney-Rivlin model is used for the material model equation. The algorithm is established by the finite element formulation employing the total Lagrangian coordinate. The deformation behavior and the stress distribution results of 3-D algorithm with various point boundary conditions are compared to those of the membrane approximation algorithm. Also, the slip boundary condition and the no-slip boundary condition are applied for the systems that have molds. Finally, the effect of sheet temperatures on the final thickness distribution is investigated for the ABS material.

  • PDF