• Title/Summary/Keyword: 2D and 3D models

Search Result 1,649, Processing Time 0.04 seconds

The PIC Bumper Beam Design Method with Machine Learning Technique (머신 러닝 기법을 이용한 PIC 범퍼 빔 설계 방법)

  • Ham, Seokwoo;Ji, Seungmin;Cheon, Seong S.
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.317-321
    • /
    • 2022
  • In this study, the PIC design method with machine learning that automatically assigning different stacking sequences according to loading types was applied bumper beam. The input value and labels of the training data for applying machine learning were defined as coordinates and loading types of reference elements that are part of the total elements, respectively. In order to compare the 2D and 3D implementation method, which are methods of representing coordinate value, training data were generated, and machine learning models were trained with each method. The 2D implementation method is divided FE model into each face and generating learning data and training machine learning models accordingly. The 3D implementation method is training one machine learning model by generating training data from the entire finite element model. The hyperparameter were tuned to optimal values through the Bayesian algorithm, and the k-NN classification method showed the highest prediction rate and AUC-ROC among the tuned models. The 3D implementation method revealed higher performance than the 2D implementation method. The loading type data predicted through the machine learning model were mapped to the finite element model and comparatively verified through FE analysis. It was found that 3D implementation PIC bumper beam was superior to 2D implementation and uni-stacking sequence composite bumper.

A Study for Examination of Road Noise Prediction Results According to 3-d Noise Prediction Models and Input Parameters (3차원 소음예측모델 및 입력변수 변화에 따른 도로소음 예측결과 검토에 대한 연구)

  • Sun, Hyosung
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.112-118
    • /
    • 2014
  • The application of a 3-d noise prediction model is increasing as a tool for performing actual noise assessment in order to investigate the noise impact of the residential facility around a development region. However, because the appropriate plans of applying a 3-d noise prediction model is insufficient, it is important to secure the reliability of the noise prediction results generated by a 3-d noise prediction model. Therefore, this study is focused on examining a 3-d noise prediction model, and a prediction equation and input data in it. For this, the 3-d noise prediction models such as SoundPLAN, Cadna-A, IMMI is applied in road noise. After the contents of road noise equations, input data of road noise source, and input data of road noise barrier are understood, the road noise prediction results are compared and examined according to the variation of 3-d noise prediction model, road noise equation, and input data of road noise source and road noise barrier.

Comparison of Performance of Medical Image Semantic Segmentation Model in ATLASV2.0 Data (ATLAS V2.0 데이터에서 의료영상 분할 모델 성능 비교)

  • So Yeon Woo;Yeong Hyeon Gu;Seong Joon Yoo
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.267-274
    • /
    • 2023
  • There is a problem that the size of the dataset is insufficient due to the limitation of the collection of the medical image public data, so there is a possibility that the existing studies are overfitted to the public dataset. In this paper, we compare the performance of eight (Unet, X-Net, HarDNet, SegNet, PSPNet, SwinUnet, 3D-ResU-Net, UNETR) medical image semantic segmentation models to revalidate the superiority of existing models. Anatomical Tracings of Lesions After Stroke (ATLAS) V1.2, a public dataset for stroke diagnosis, is used to compare the performance of the models and the performance of the models in ATLAS V2.0. Experimental results show that most models have similar performance in V1.2 and V2.0, but X-net and 3D-ResU-Net have higher performance in V1.2 datasets. These results can be interpreted that the models may be overfitted to V1.2.

A Study on the Expression Transformation of Visual Information in 3D Architectural Models (3차원 건축모델정보의 표현변용방식에 관한 연구)

  • Park, Young-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • This study investigated the application and the change of various architectural models by analyzing expression viewpoint media, which were applied to the visual information of digitalized 3D contemporary architectural models. The purpose of this study was to specify how modern architects have changed 3D architectural models to conceptual, logical, and formational visual information in the process of design. This study discovered a framework of analyses by theoretically investigating a relationship between expression media and expression change in the process of visualizing architectural models. Using the framework of analyses, this study analyzed how the expression viewpoints of architectural model information have been changed and applied. The transformation media of the visual information of digitalized 3D architectural models can be classified into conceptual, analytical, and formational information: 1) Contemporary architects used author-centered subjective viewpoints to express architectural concepts, which were generated in the process of their design. They selected a perspective viewpoint and a bird's eye view in order to present their architectural concepts and to depict them with one architectural model by expanding the visual scope of conceptual information. 2) Contemporary architects adopted observer-centered objective bird's eye view expression media to effectively present their architectural information to building owners and viewers. They used transformal media, which integrate architectural information into 3D and change it to different scales, in order to express their architecture logically. 3) Contemporary architects delivered model information about the generation and change of forms by expressing the image of a project from an author-centered viewpoint, instead of objectively defining formational information. They explained the generation principle of architectural forms via transformal media which develop and rotate an architectural model.

Accuracy of maxillofacial prototypes fabricated by different 3-dimensional printing technologies using multi-slice and cone-beam computed tomography

  • Yousefi, Faezeh;Shokri, Abbas;Farhadian, Maryam;Vafaei, Fariborz;Forutan, Fereshte
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose: This study aimed to compare the accuracy of 3-dimensional(3D) printed models derived from multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) systems with different fields of view (FOVs). Materials and Methods: Five human dry mandibles were used to assess the accuracy of reconstructions of anatomical landmarks, bone defects, and intra-socket dimensions by 3D printers. The measurements were made on dry mandibles using a digital caliper (gold standard). The mandibles then underwent MDCT imaging. In addition, CBCT images were obtained using Cranex 3D and NewTom 3G scanners with 2 different FOVs. The images were transferred to two 3D printers, and the digital light processing (DLP) and fused deposition modeling (FDM) techniques were used to fabricate the 3D models, respectively. The same measurements were also made on the fabricated prototypes. The values measured on the 3D models were compared with the actual values, and the differences were analyzed using the paired t-test. Results: The landmarks measured on prototypes fabricated using the FDM and DLP techniques based on all 4 imaging systems showed differences from the gold standard. No significant differences were noted between the FDM and DLP techniques. Conclusion: The 3D printers were reliable systems for maxillofacial reconstruction. In this study, scanners with smaller voxels had the highest precision, and the DLP printer showed higher accuracy in reconstructing the maxillofacial landmarks. It seemed that 3D reconstructions of the anterior region were overestimated, while the reconstructions of intra-socket dimensions and implant holes were slightly underestimated.

The Effect of Preoperative Three Dimensional Modeling and Simulation on Outcome of Intracranial Aneursym Surgery

  • Erkin Ozgiray;Bugra Husemoglu;Celal Cinar;Elif Bolat;Nevhis Akinturk;Huseyin Biceroglu;Ceren Kizmazoglu
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.2
    • /
    • pp.166-176
    • /
    • 2024
  • Objective : Three-dimensional (3D) printing in vascular surgery is trending and is useful for the visualisation of intracranial aneurysms for both surgeons and trainees. The 3D models give the surgeon time to practice before hand and plan the surgery accordingly. The aim of this study was to examine the effect of preoperative planning with 3D printing models of aneurysms in terms of surgical time and patient outcomes. Methods : Forty patients were prospectively enrolled in this study and divided into two groups : groups I and II. In group I, only the angiograms were studied before surgery. Solid 3D modelling was performed only for group II before the operation and was studied accordingly. All surgeries were performed by the same senior vascular neurosurgeon. Demographic data, surgical data, both preoperative and postoperative modified Rankin scale (mRS) scores, and Glasgow outcome scores (GOS) were evaluated. Results : The average time of surgery was shorter in group II, and the difference was statistically significant between the two groups (p<0.001). However, no major differences were found for the GOS, hospitalisation time, or mRS. Conclusion : This study is the first prospective study of the utility of 3D aneurysm models. We show that 3D models are useful in surgery preparation. In the near future, these models will be used widely to educate trainees and pre-plan surgical options for senior surgeons.

Extraction and Implementation of MPEG-4 Facial Animation Parameter for Web Application (웹 응용을 위한 MPEC-4 얼굴 애니메이션 파라미터 추출 및 구현)

  • 박경숙;허영남;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1310-1318
    • /
    • 2002
  • In this study, we developed a 3D facial modeler and animator that will not use the existing method by 3D scanner or camera. Without expensive image-input equipments, we can easily create 3D models only using front and side images. The system is available to animate 3D facial models as we connect to animation server on the WWW which is independent from specific platforms and softwares. It was implemented using Java 3D API. The facial modeler detects MPEG-4 FDP(Facial Definition Parameter) feature points from 2D input images, creates 3D facial model modifying generic facial model with the points. The animator animates and renders the 3D facial model according to MPEG-4 FAP(Facial Animation Parameter). This system can be used for generating an avatar on WWW.

Representing the Materials of 3D Models using 3D Printing and UV Map (3D 프린팅 및 UV 맵을 이용한 입체 재질의 표현)

  • Seo, Hea-min;Kim, Byoung-chul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.3-4
    • /
    • 2017
  • 일련의 캐릭터를 표현할 경우 대상의 외형은 물론 질감표현 역시 중요한 요소이다. 3D 프린터의 보편화로 외형 표현은 비교적 쉽게 이루어질 수 있으나 질감표현은 여러 한계로 인해 표현이 어렵다. 본 연구는 2D 이미지 기반의 UV 맵 및 관련 입체화 기능을 활용해 3D 프린팅에 적용 가능한 재질표현 과정을 기술한다. 사실적 재질 표현을 위해 3D 모델의 UV 맵과 그 위에 여러 물성의 재질을 부착 후 정합하여 그 결과의 효과도 논의하고자 한다.

  • PDF

Generation of 3D Sign Language Animation Using Spline Interpolation (스플라인 보간법을 이용한 3차원 수화 애니메이션의 생성)

  • ;吳芝英
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.931-934
    • /
    • 1998
  • We have implemented a sign language animation system using 2D and 3D models. From the previous studies, we find out that both models have several limitations based on the linear interpolation and fixed number of frames, and they result in incorrectness of actions and unnatural movements. To solve the problems, in this paper, we propose a sign language animation system using spline interpolation method and variable number of frames. Experimental results show that the proposed method could generate animation more correctly and rapidly than previous methods.

  • PDF

Building 3D model using laser scan data

  • Choi, Sung-Hun;Kim, Dong-Seok;Lee, Heung-Jae;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.101-105
    • /
    • 2002
  • In this paper we describe techniques for the automated creation of geometric correct 3-D models of the building using two 2-D laser scanners. One of the laser scanners is used for position estimation using a scan matching algorithm, while the other is used to build 3-D models of the facade of the buildings. Those models can be used for virtual reality, tele-presence, digital cinematography and urban planning applications. Results are shown for building models in our campus using real data acquired from two sensors.

  • PDF