• Title/Summary/Keyword: 2D and 3D Indoor Models

Search Result 17, Processing Time 0.022 seconds

Comparison of 3D Reconstruction Methods to Create 3D Indoor Models with Different LODs

  • Hong, Sungchul;Choi, Hyunsang
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.674-675
    • /
    • 2015
  • A 3D indoor model becomes an indiscernible component of BIM (Building Information Modeling) and GIS (Geographic Information System). However, a huge amount of time and human resources are inevitable for collecting spatial measurements and creating such a 3D indoor model. Also, a varied forms of 3D indoor models exist depending on their purpose of use. Thus, in this study, three different 3D indoor models are defined as 1) omnidirectional images, 2) a 3D realistic model, and 3) 3D indoor as-built model. A series of reconstruction methods is then introduced to construct each type of 3D indoor models: they are an omnidirectional image acquisition method, a hybrid surveying method, and a terrestrial LiDAR-based method. The reconstruction methods are applied to a large and complex atrium, and their 3D modeling results are compared and analyzed.

  • PDF

Finding Optimal Paths in Indoor Spaces using 3D GIS (3D-GIS를 이용한 건물 내부공간의 최적경로탐색)

  • Ryu Keun-Won;Jun Chul-Min;Jo Sung-Kil;Lee Sang-Mi
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.387-392
    • /
    • 2006
  • 3D-based information is needed increasingly as well as 2D Information as cities grow and buildings become large and complex, and use of 3D-models is getting attention to handle such problems. However, there are limitations in using 3D-models because most applications and research efforts using them have been for visual analysis. This study presents a method to find optimal paths in indoor spaces as an illustration for using 3D-models in spatial analysis. We modeled rooms, paths and other facilities in a building as individual 3D objects. We made it possible to find paths based on network structure by integrating the vector-based networks of 2D-GIS and 3D-model.

  • PDF

Developing a 3D Indoor Evacuation Simulator using a Spatial DBMS (공간 DBMS를 활용한 3차원 실내 대피 경로 안내 시스템)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • Currently used 3D models, which are mostly focused on visualization of 3D objects and lack topological structure, have limitation in being used for 3D spatial analyses and applications. However, implementing a full topology for the indoor spatial objects is less practical due to the increase of complexity and computation time. This study suggests an alternative method to build a 3D indoor model with less complexity using a spatial DBMS. Storing spatial and nonspatial information of indoor spaces in DB tables enables faster queries, computation and analyses. Also it is possible to display them in 2D or 3D using the queried information. This study suggests a 2D-3D hybrid data model, which combines the 2D topology constructed from CAD floor plans and stored in a spatial DBMS and the 3D visualization functionality. This study showed the process to build the proposed model in a spatial DBMS and use spatial functions and queries to visualize in 2D and 3D. And, then, as an example application, it illustrated the process to build an indoor evacuation simulator.

  • PDF

An Indoor Space Management System using a Spatial DBMS (공간 DBMS를 이용한 실내 공간관리시스템)

  • Yi, Hyun-Jin;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.4
    • /
    • pp.31-38
    • /
    • 2009
  • Most 3D models found in the literature focus on theoretical topology for exterior 3D volumes. Although there are a few indoor models such as CityGML or IFC, implementing a full topology for the indoor spaces is either less practical due to the complexity or not even necessary in some application domains. Moreover, current spatial DBMSs do not support functionalities explicitly for 3D topological relations. In this study, an alternative method to build a 3D indoor model with less complexity ernativespatial DBMS is suggested. Focusnation the fact that semantic attributes can be storedion the floor surface, we suggestivemulti-layered 3D model for indoor spaces. We show the process to build the proposed model in the PostGIS, a spatial DBMS. And, then, as an example application, we illustrate the process to build and run a campus building information system.

  • PDF

Semi-Automatic Method for Constructing 2D and 3D Indoor GIS Maps based on Point Clouds from Terrestrial LiDAR (지상 라이다의 점군 데이터를 이용한 2차원 및 3차원 실내 GIS 도면 반자동 구축 기법 개발)

  • Hong, Sung Chul;Jung, Jae Hoon;Kim, Sang Min;Hong, Seung Hwan;Heo, Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2013
  • In rapidly developing urban areas that include high-rise, large, and complex buildings, indoor and outdoor maps in GIS become a basis for utilizing and sharing information pertaining to various aspects of the real world. Although an indoor mapping has gained much attentions, research efforts are mostly in 2D and 3D modeling of terrain and buildings. Therefore, to facilitate fast and accurate construction of indoor GIS, this paper proposes a semi-automatic method consisting of preprocessing, 2D mapping, and 3D mapping stages. The preprocessing is designed to estimate heights of building interiors and to identify noise data from point clouds. In the 2D mapping, a floor map is extracted with a tracing grid and a refinement method. In the 3D mapping, a 3D wireframe model is created with heights from the preprocessing stage. 3D mesh data converted from noise data is combined with the 3D wireframe model for detail modeling. The proposed method was applied to point clouds depicting a hallway in a building. Experiment results indicate that the proposed method can be utilized to construct 2D and 3D maps for indoor GIS.

Syntax-based Accessibility for 3D Indoor Spaces (3차원 내부공간에서의Syntax기반의 접근성 산출)

  • Kim, Hye-Young;Jun, Chul-Min;Kwon, Jay-Hyoun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.11-18
    • /
    • 2007
  • Recently 3D GIS and its applications are getting attention increasingly as various ubiquitous-related techniques for 3D spaces are being developed. Although they call for quantitative measures such as accessibility, most accessibilityrelated studies are limited to 2D networks, not 3D indoor space levels. In this paper, we develop an accessibility index applicable to 3D models. We first examine the theory of Space Syntax which has been developed and used to measure the connectivity or relationships between spatial segments in urban or architectural environments. Then, we expand the principle to a more general form so it can be applied to both street and indoor space levels. We incorporate different types of impedances in moving between places including distances, turns and transfers between floors into the traditional Space Syntax that measures the spatial depths solely based on the structural forms. Finally, we illustrate the use of the proposed measure comparatively using a campus building.

  • PDF

A 3-D Propagation Model Considering Building Transmission Loss for Indoor Wireless Communications

  • Choi, Myung-Sun;Park, Han-Kyu;Heo, Youn-Hyoung;Oh, Sang-Hoon;Myung, Noh-Hoon
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.247-249
    • /
    • 2006
  • In the development of a new wireless communications system, a versatile and accurate radio channel for indoor communications is needed. In particular, the investigation of radio transmission into buildings is very important. In this letter, we present an improved three-dimensional electromagnetic wave propagation prediction model for indoor wireless communications that takes into consideration building penetration loss. A ray tracing technique based on an image method is also employed in this study. Three-dimensional models can predict any complex indoor environment composed of arbitrarily shaped walls. A speed-up algorithm, which is a modified deterministic ray tube method, is also introduced for efficient prediction and computation.

  • PDF

3D-GIS Network Modeling for Optimal Path Finding in Indoor Spaces (건물 내부공간의 최적경로 탐색을 위한 3차원 GIS 네트워크 모델링)

  • Park, In-Hye;Jun, Chul-Min;Choi, Yoon-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.27-32
    • /
    • 2007
  • 3D based information is demanded increasingly as cities grow three dimensionally and buildings become large and complex. The use of 3D GIS is also getting attention as fundamental data for ubiquitous computing applications such as location-based guidance, path finding and emergency escaping. However, most 3D modeling techniques are focused on the visualization of buildings or terrains and do not have topological structures required in spatial analyses. In this paper, we introduce a method to incorporate topological relationship into 3D models by combining 2D GIS layers and 3D model. We divide indoor spaces of a 3D model into discrete objects and then define the relationship with corresponding features in 2D GIS layers through database records. We also show how to construct hallways network in the 2D-3D integrated building model. Finally, we test different cases of route finding situations inside a building such as normal origin-destination path finding and emergency evacuation.

  • PDF

Developing Data Fusion Method for Indoor Space Modeling based on IndoorGML Core Module

  • Lee, Jiyeong;Kang, Hye Young;Kim, Yun Ji
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.31-44
    • /
    • 2014
  • According to the purpose of applications, the application program will utilize the most suitable data model and 3D modeling data would be generated based on the selected data model. In these reasons, there are various data sets to represent the same geographical features. The duplicated data sets bring serious problems in system interoperability and data compatibility issues, as well in finance issues of geo-spatial information industries. In order to overcome the problems, this study proposes a spatial data fusion method using topological relationships among spatial objects in the feature classes, called Topological Relation Model (TRM). The TRM is a spatial data fusion method implemented in application-level, which means that the geometric data generated by two different data models are used directly without any data exchange or conversion processes in an application system to provide indoor LBSs. The topological relationships are defined and described by the basic concepts of IndoorGML. After describing the concepts of TRM, experimental implementations of the proposed data fusion method in 3D GIS are presented. In the final section, the limitations of this study and further research are summarized.

A 2D / 3D Map Modeling of Indoor Environment (실내환경에서의 2 차원/ 3 차원 Map Modeling 제작기법)

  • Jo, Sang-Woo;Park, Jin-Woo;Kwon, Yong-Moo;Ahn, Sang-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.355-361
    • /
    • 2006
  • In large scale environments like airport, museum, large warehouse and department store, autonomous mobile robots will play an important role in security and surveillance tasks. Robotic security guards will give the surveyed information of large scale environments and communicate with human operator with that kind of data such as if there is an object or not and a window is open. Both for visualization of information and as human machine interface for remote control, a 3D model can give much more useful information than the typical 2D maps used in many robotic applications today. It is easier to understandable and makes user feel like being in a location of robot so that user could interact with robot more naturally in a remote circumstance and see structures such as windows and doors that cannot be seen in a 2D model. In this paper we present our simple and easy to use method to obtain a 3D textured model. For expression of reality, we need to integrate the 3D models and real scenes. Most of other cases of 3D modeling method consist of two data acquisition devices. One for getting a 3D model and another for obtaining realistic textures. In this case, the former device would be 2D laser range-finder and the latter device would be common camera. Our algorithm consists of building a measurement-based 2D metric map which is acquired by laser range-finder, texture acquisition/stitching and texture-mapping to corresponding 3D model. The algorithm is implemented with laser sensor for obtaining 2D/3D metric map and two cameras for gathering texture. Our geometric 3D model consists of planes that model the floor and walls. The geometry of the planes is extracted from the 2D metric map data. Textures for the floor and walls are generated from the images captured by two 1394 cameras which have wide Field of View angle. Image stitching and image cutting process is used to generate textured images for corresponding with a 3D model. The algorithm is applied to 2 cases which are corridor and space that has the four wall like room of building. The generated 3D map model of indoor environment is shown with VRML format and can be viewed in a web browser with a VRML plug-in. The proposed algorithm can be applied to 3D model-based remote surveillance system through WWW.

  • PDF