• Title/Summary/Keyword: 2D X-Y table

Search Result 36, Processing Time 0.047 seconds

Realization of a two dimensional Haptic Interfacing Apparatus for Virtual Object Recognition Experiments (가상물체 인식 실험을 위한 2차원 Haptic 인터페이스 장치의 구현)

  • Lee, Joon-Cheol;Jang, Tae-Jeong
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.415-421
    • /
    • 1999
  • In this paper, a 2D X-Y table, two axes of which are symmetrical, and a force sensing device are constructed, which comprise a 2D haptic interfacing apparatus. Two DC motors are used for actuating the two axes of the table and two precision encoders for sensing the position of each axis. Four PZTs are used for sensing the direction and the magnitude of the 2D force applied to the force sensing device by the user. The performance of the 2D haptic interface device is tested by 2D virtual object recognition experiments.

  • PDF

A study on the development of automatic sewing machine (산업용 자동 재봉기 제어장치 개발에 관한 연구)

  • Kim, Jong-Chan;La, Seung-Ho;Lee, Eung-Hyuk;Heo, Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.281-285
    • /
    • 1990
  • Our N.C. sewing machine is a device that acts sewing automatically in reference to N.C. data made by data input device. Our N.C. sewing mechine is composed of induction motor that has electric clutch and brake, step motor that drives x-y table. Sewing area of our machine is 170 mm * 100 mm, maximum sewing speed is about 2000 spm, maximum stitch length 6.2 mm. In actual sewing, synchronization between motion of needle up-down and motion of x-y table is a critical factor. In this paper, technology about synchronization will be profoundly discussed.

  • PDF

Construction of the 2D General $\Delta-TABLE$ of the Numerical Series of Position for the Syntactical Semantics of Visual Space (시(視)공간의 통사의미론을 위한 위치수열 2차원 일반 $\Delta-TABLE$의 구성)

  • Kim Bok-Young
    • Journal of Science of Art and Design
    • /
    • v.2
    • /
    • pp.239-293
    • /
    • 2000
  • The paper aims to study how to describe the rigorous position on which semantic elements are laid, within the visual space. This purpose is, first of all, for the construction of visual syntactical semantics of the visual space. For this aim, the preliminary research begins with some definitions on : 1) visual space, visual design, visual syntactical semantic meaning, 2) position, sequence of position, 2-dim. sequence of position, and 3) 2-dim. numerical series of position, harmonious dynamic values. Here, The main issue is to define the position in general. To solve this problem, the researcher surveyed the positions on which the sets of pixemes are set up. The results are as follows ; 1. As far as the positions in visual space are concerned, they are the possible locations permitted in the visual patches. They are not the factual but the possible positions. 2.The position value that the sequential point has is not arithmetical but harmonious-dynamic, for it is not permitted for its own sake, but for the person, that is to say, for the viewer's visual perception. 3. The harmonious-dynamic value of positional sequence can be composed of the 2-dimensional successive numerical series which is, in turn, composed of the primordial 3 values x0, $\mu0$, y0. Here, the $\mu0$ is the harmonious mean value of x0 and y0. The x0 and y0 are, therefore, of the mutual dynamic relationship. 4. From this, the 2-dim general $\Delta-TABLE$ of the numerical series of position in visual design could be acquired through development of the primordial 3 values into the $X_i,\;Y_i$, orbit values.

  • PDF

Crystallization and Electrical Properties of $Ba_2TiSi_2O_8$ Glass-Ceramics from $K_2O-BaO-TiO_2-SiO_2$ System

  • Chae, Su-Jin;Lee, Hoi-Kwan;Kang, Won-Ho
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.110-114
    • /
    • 2006
  • Dielectric properties of glass-ceramics with fresnoite(Ba2TiSi208) crystals have been investigated in xK20-(33.3-x)BaO-16.7TiO2-50SiO2 ($0{\leq}x{\leq}20mol%$) glasses. The glassy nature was analyzed by differential thermal analyses and glass-ceramics was variable and control table by the processing parameters like time and temperature. Dielectric constant was measured over a temperature from 125K to 425k at frequencies form 100Hz to 1MHz, and laid in the range 16-10. Piezoelectric constant d33 was measured using a YE2703A d33meter and changed from 5.9 to 4.8pCN-1 with x contents. The spontaneous polarization Ps estimated from the hysteresis at ${\pm}1.2kV$ was ${\sim}0.3\;{\mu}C/cm2$ at room temperature.

  • PDF

Coherent X-ray Diffraction Imaging with Single-pulse Table-top Soft X-ray Laser

  • Kang, Hyon-Chol;Kim, H.T.;Lee, S.K.;Kim, C.M.;Choi, I.W.;Yu, T.J.;Sung, J.H.;Hafz, N.;Jeong, T.M.;Kang, S.W.;Jin, Y.Y.;Noh, Y.C.;Ko, D.K.;Kim, S.S.;Marathe, S.;Kim, S.N.;Kim, C.;Noh, D.Y.;Lee, J.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.429-430
    • /
    • 2008
  • We demonstrate coherent x-ray diffraction imaging using table-top x-ray laser at a wavelength of 13.9nm driven by 10-Hz ti:Sapphire laser system at the Advanced Photonics Research Institute in Korea. Since the flux of x-ray photons reaches as high as $10^9$ photons/pulse in a $20{\times}20{\mu}m^2$ field of view, we measured a ingle-pulse diffraction pattern of a micrometer-scale object with high dynamic range of diffraction intensities and successfully reconstructed to the image using phase retrieval algorithm with an oversampling ratio of 1:6. the imaging resolution is $^{\sim}150$ nm, while that is much improved by stacking the many diffraction patterns. This demonstration can be extended to the biological sample with the diffraction limited resolution.

  • PDF

Decoupled Neural Network Reference Compensation Technique for a PD Controlled Two Degrees-of-Freedom Inverted Pendulum

  • Seul Jung;Cho, Hyun-Taek
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 2004
  • In this paper, the decoupled neural network reference compensation technique (DRCT) is applied to the control of a two degrees-of-freedom inverted pendulum mounted on an x-y table. Neural networks are used as auxiliary controllers for both the x axis and y axis of the PD controlled inverted pendulum. The DRCT method known to compensate for uncertainties at the trajectory level is used to control both the angle of a pendulum and the position of a cart simultaneously. Implementation of an on-line neural network learning algorithm has been implemented on the DSP board of the dSpace DSP system. Experimental studies have shown successful balancing of a pendulum on an x-y plane and good position control under external disturbances as well.

An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses (주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여)

  • Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.7-16
    • /
    • 1985
  • To grasp canonical correlations, their related backgrounds in various growth factors of stem, the characteristics of stem by synthetical dispersion analysis, principal component analysis and canonical correlation analysis as optimum method were applied to Larix leptolepis. The results are as follows; 1) There were high or low correlation among all factors (height ($x_1$), clear height ($x_2$), form height ($x_3$), breast height diameter (D. B. H.: $x_4$), mid diameter ($x_5$), crown diameter ($x_6$) and stem volume ($x_7$)) except normal form factor ($x_8$). Especially stem volume showed high correlation with the D.B.H., height, mid diameter (cf. table 1). 3) (1) Canonical correlation coefficients and canonical variate between stem volume and composite variate of various height growth factors ($x_1$, $x_2$ and $x_3$) are ${\gamma}_{u1,v1}=0.82980^{**}$, $\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3$. (2) Those of stem volume and composite variate of various diameter growth factors ($x_4$, $x_5$ and $x_6$) are ${\gamma}_{u1,v1}=0.98198^{**}$, $\{{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6$. (3) And canonical correlation between stem volume and composite variate of six factors including various heights and diameters are ${\gamma}_{u1,v1}=0.98700^{**}$, $\{^u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6$. All the cases showed the high canonical correlation. Height in the case of (1), D.B.H. in that of (2), and the D.B.H, and height in that of (3) respectively make an absolute contribution to the canonical correlation. Synthetical characteristics of each qualitative growth are largely affected by each factor. Especially in the case of (3) the influence by the D.B.H. is the most significant in the above six factors (cf. table 2). 3) Canonical correlation coefficient and canonical variate between composite variate of various height growth factors and that of the various diameter factors are ${\gamma}_{u1,v1}=0.78556^{**}$, $\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076x_5+0.05285x_6$. As shown in the above facts, only height and D.B.H. affected considerably to the canonical correlation. Thus, it was revealed that the synthetical characteristics of height growth was determined by height and those of the growth in thickness by D.B.H., respectively (cf. table 2). 4) Synthetical characteristics (1st-3rd principal component) derived from eight growth factors of stem, on the basis of 85% accumulated proportion aimed, are as follows; Ist principal component ($z_1$): $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$, 2nd principal component ($z_2$): $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$, 3rd principal component ($z_3$): $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$. The first principal component ($z_1$) as a "size factor" showed the high information absorption power with 63.26% (proportion), and its principal component score is determined by stem volume, D.B.H., mid diameter and height, which have considerably high factor loading. The second principal component ($z_2$) is the "shape factor" which indicates cubic similarity of the stem and its score is formed under the absolute influence of normal form factor. The third principal component ($z_3$) is the "shape factor" which shows the degree of thickness and length of stem. These three principal components have the satisfactory information absorption power with 88.36% of the accumulated percentage. variance (cf. table 3). 5) Thus the principal component and canonical correlation analyses could be applied to the field of forest measurement, judgement of site qualities, management diagnoses for the forest management and the forest products industries, and the other fields which require the assessment of synthetical characteristics.

  • PDF

A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

  • Cho, In-Ho;Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.121-126
    • /
    • 1985
  • D.K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if W(R)/I(R)$^{3}$ and W(S)/I(S)$^{3}$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K.I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings. Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is nondegenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$ (V, R) induced by B is an isomorphism), and with a quadratic mapping .phi.:V.rarw.R such that B(x,y)=(.phi.(x+y)-.phi.(x)-.phi.(y))/2 and .phi.(rx)= $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$, .., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2, we reserve the notation [ $a_{11}$, $a_{22}$] for the space.the space.e.e.e.

  • PDF

A method of Level of Details control table for 3D point density scalability in Video based Point Cloud Compression (V-PCC 기반 3차원 포인트 밀도 확장성을 위한 LoD 제어 테이블 방법)

  • Im, Jiheon;Kim, Junsik;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.178-181
    • /
    • 2019
  • 포인트 클라우드 콘텐츠는 3D 포인트 집합으로 이루어진 3D 데이터로, 일반적으로 3D 포인트 클라우드는 하나의 객체를 표현하기 위하여 수십, 수백만 개의 3차원 포인트(Point) 데이터가 필요하며, 각 포인트 데이터는 3차원 좌표계의 (x, y, z)좌표와 포인트의 색(color), 반사율(reflectance), 법선벡터(normal) 등과 같은 속성(attribute)으로 구성되어 있다. 따라서 기존 2D영상보다 한 단계 높은 차원과 다양한 속성으로 구성된 포인트 클라우드를 사용자에게 제공하기 위해서는 고효율의 인코딩/디코딩 기술 연구가 필요하며, 다양한 대역폭, 장치 및 관심 영역에 따라 차별화된 서비스를 제공하기 위한 품질 확장성 기능의 개발이 요구된다. 이에 본 논문에서는 포인트 클라우드 압축에 사용되는 V-PCC에서 3차원 미디어인 포인트 클라우드의 3D 공간 내 포인트 간의 밀도를 변경하여, 새로운 품질 변화를 달성하고 비트전송률 변경을 추가 지원하는 방법을 제시하였다.

  • PDF

A study on the settlement of earth dam by the changes of the density (흙댐의 밀도변화에 의한 압밀침하에 대한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.3
    • /
    • pp.89-98
    • /
    • 1986
  • This study was carried out for the settlement and camber of earth dam by the changes of the density. The testing material was taken five kinds of Soil used as banking material and it was compacted by 100, 95, 90, 85 and 80% compaction degree. The results of the settlement of earth dam whose height ranges from 10m to 50m are as follows. 1.The more the fine particle (n) increases, the higher the liquid limit (WL) and the lower the dry density (rd) becomes as follows; rd=2. 22-0. 0052n (gr/cm$_3$) rd=2. 394-0. 0164WL rd=2. 185-(5. 8n-2. 5WL)X10-$_3$ 2. The higher the optimum moisture content (Wo) becomes, the lower the density becomes as follows; rt,=2. 68-0. 028Wo rd=2. 578-0. 04Wo 3. 3.Most of the consolidation occurs immediately by loading and the more the fine particle increases, the lower the coefficient of consolidation becomes. 4.The more the fine particle increases and lower the compaction degree (D) becomes,the lower the pre-consolidation load (Pc) becomes but on the contrary the compression index (Cc) becomes higher. Those equation is as follows. Pc=3. 32-(4. 3n-3. 0D) X10-2 (kg/cm$^2$) Cc=0. 41+(1. 33n-4. 44D) X10-$^3$ 5.The more the consolidation load (P) increases, the lower the coefficient of volume change (mv) becomes with mv=ap-b, the higher the consolidation ratio (u) becomes with U= (0. 6~1. 35)PO.4 6.The more the fine particle (n) increases, the more the settlement of dam occurs with U=anb and 60-80% of the settlement occurs under construction. 7.The camber of dam has higher value in condition that has more fine particle, poorer compaction and higher height of dam. In the dam construction about twice value of table 7 is required for dam safety.

  • PDF