• Title/Summary/Keyword: 2D Tidal Current Numerical Model

Search Result 16, Processing Time 0.028 seconds

Numerical Modeling of Tide and Tidal Current in the Kangjin Bay, South Sea, Korea

  • Ro, Young-Jae;Jun, Woong-Sik;Jung, Kwang-Young;Eom, Hyun-Min
    • Ocean Science Journal
    • /
    • v.42 no.3
    • /
    • pp.153-163
    • /
    • 2007
  • This study is based on a series of numerical modeling experiments to understand the tidal circulation in the Kangjin Bay (KB). The tidal circulation in the KB is mostly controlled by the inflow from two channels, Noryang and Daebang which introduce the open ocean water into the northern part of the KB with relatively strong tidal current, while in the southern part of the KB, shallowest region of the entire study area, weak tidal current prevails. The model prediction of the sea level agrees with observed records at skill scores exceeding 90 % in terms of the four major tidal constituents (M2, S2, K1, O1). However, the skill scores for the tidal current show relatively lower values of 87, 99, 59, 23 for the semi-major axes of the constituents, respectively. The tidal ellipse parameters in the KB are such that the semi-major axes of the ellipse for M2 range from 1.7 to 38.5 cm/s and those for S2 range from 0.5 to 14.4 cm/s. The orientations of the major-axes show parallel with the local isobath. The eccentricity values at various grid points of ellipses for M2 and S2 are very low with 0.2 and 0.06 on the average, respectively illustrating that the tidal current in the KB is strongly rectilinear. The magnitude of the tidal residual current speed in the KB is on the order of a few cm/s and its distribution pattern is very complex. One of the most prominent features is found to be the counter-clockwise eddy recirculation cell at the mouth of the Daebang Channel.

Tide and tidal current around the sea route of Jinhae and Masan passages (진해 및 마산항로 주변해역의 조석·조류특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • In order to understand the tide and current around the sea route of Jinhae and Masan passages, tide measurement and 2D numerical model experiments of tidal current and residual flow were carried out. Tide is composed of 84% of semi-diurnal tide, 11% of diurnal tide and 4% of shallow water tide, respectively. Phase lags of the major components for the tide around the study area have little differences. The flows are reversing on the whole, but have rotational form around Jamdo Island, south of Masan passage in spring tide and Ungdo Island, north of Masan passage in middle and neap tide. Current flows the speed of 50 cm/s in the sea areas near small islands, 5 cm/s in Jinhae harbor, Hangam bay and near Jinhae industrial complex and 20-30 cm/s in Jinhae passage, Budo channel and Masan passage. Tide-induced topographical eddies are formed near small islands, but few eddies exist and the flow rate of less than 5 cm/s tidal residual current formed in Jinhae and Masan passages. The flows in Jinhae and Masan passage give a good condition for a passage into Jinhae and Masan harbor.

Development of Simulation Model for Diffusion of Oil Spill in the Ocean 1 -Three Dimensional Characteristics of the Circulation in the Nearly Closed Bay- (해양유출기름의 확산 시뮬레이션 모델 개발I- 폐쇄만에서의 3차원 흐름특성분석 -)

  • Lee, J.W.;Kim, K.C.;Kang, S.Y.;Doh, D.H.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.241-255
    • /
    • 1997
  • Three dimensional numerical model is used to simulate the circulation patterns in the Gamcheon Bay located in Pusan, Korea and compared with the observed data. The model is forced by winds, tidal elevation at open boundaries, and warm water discharged from the outfall of power plant, Turbulence mixing coefficients are calculated according to a ${\kippa}-{\varepsilon}$ turbulence closure submodel. Temperature, salinty and current are measuted extensively and these measuted data are compared with the simulation results. Eddy-like features exist both in observed data dna simulation results. These eddies are the results of interaction with the weak tidal current, wind driven current and warm water discharges. Compensational deeects are also found to exit such that while surface current is strong, bottom current tends to weaken and vice versa.

  • PDF

Marine Environmental Characteristics of Seagrass Habitat in Seomjin River Estuary (섬진강 하구역 잘피(Z. marina)서식지의 해양환경 특성)

  • Ji, Hyeong-Seok;Seo, Hee-Jeong;Kim, Myeong-Won;Lee, Moon Ock;Kim, Jongkyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.236-244
    • /
    • 2014
  • This study considered a seagrass habitat in order to analyze the characteristics of a marine environment of seagrass located in the Seomjin river estuary, through an analysis of the distribution of the water depth, field observation, and three-dimensional numerical experiments using an EFDC model. The seagrass habitat was usually distributed at D.L(-) 0.5~0.0 m, and was hardly seen in the intertidal zone higher than that range. The distribution of the water temperature was within the range of $7.0{\sim}23.2^{\circ}C$, and the seagrass was demonstrated to have a strong tolerance to changes in the water temperature. In addition, the salinity distribution was found to be 27.2~31.0 psu, with suspended solids of 32.1 mg/L, which were higher than the previous research results (Huh et al., 1998), implying that there may be a reduction in the amount of deposits caused by the suspended solids. As for the sedimentary facies, they were comprised of 62.7% sand, 19.1% silt, and 18.2% clay, indicating that the arenaceous was superior and the sedimentary facies were similar to that of Dadae Bay. According to a numerical experiment, the maximum tidal current was 75 cm/s, while the tidal residual current was 10 cm/s, confirming that it sufficiently adapted to strong tidal currents. The erosion and deposition are predicted to be less than 1.0 cm/year. Thus, it is judged that the resuspension of sediments due to tidal currents and the changes in sedimentary facies are insignificant.

Modeling of Tidal and Wind-Driven Currents in Eastern Coastal Waters of the Yellow Sea (황해동측 연안성의 조류 및 풍성류 모형)

  • Ro, Young-Jae;You, Ik-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.231-242
    • /
    • 1992
  • This study uses a numerical model to investigate the circulation patterns of the tidal and wind driven current components. The model is vertically averaged 2-D transient using explicit nume-rical scheme, based on equation of motion and continuity. forced by water elevation at open boundaries and wind stress. The model domain extends from 35$^{\circ}$N to 36$^{\circ}$40'N lat., and 125$^{\circ}$E to 126$^{\circ}$40'E long. with x, y grid spacing of 5 km. The model reproduces the tide and tidal currents by 4 major constituents successfully with more than 90% accuracy when compared to two offshore tidal records and currents at one offshore measurements for 22 days. Responses of coastal waters to six schematic wind events are analyzed in terms of current distribution patterns and local features. Regardless of wind directions. strong coastal currents were produced. Bottom topography plays a critical role in producing a local eddy Held whose center is located offshore Pu An with its major radius of 40 km.

  • PDF

Numerical Simulation for Net-water Flux of the Cross-sectional area in the Nakdong River Estuary (낙동강 하구역내 사주간의 단면유량플럭스 수치모의)

  • Yoon, Han-Sam;Lee, In-Cheol;Ryu, Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.186-192
    • /
    • 2005
  • We investigated the deposition characteristics and mass transport flux estimation of the Nakdong estuary, Korea. To understand the effects of the tidal current circulation that influences estuary terrain changes, we used a 2D numerical model to map seawater circulation under three different situations, with the level of river flow being set as none or flood. The net-water flux of the cross-sectional area between sandbars (known as dung) was estimated. From our review of previous research, we know that the development of local sandbars shifted from the west to the east side of the estuary after the construction of the Nakdong River dike. Current development is occurring mostly at the Bakhap-dung near Tadea. The seawater circulation pattern over this large-scale area of tidal na is brings changes related to the quantity of the outflow from the Nakdong River. Based on the calculated results for the net-water flux of the cross-sectional area, we see very strong accumulation in local waters around Jangjiado, Bakhapdung, and Tadae under flood river flow conditions, but accumulation in local waters around Jinudo under the other states of flow. Consequently, in the Nakdong estuary, the main sensitive regions that are affected by changes in the flow of river discharge are the local waters around Jangiado, Bakhapdung, Tadae, and Jinudo.

  • PDF

A Study on the Thermal Fields Control using a Floating-type Current Control Structure (부유식 해수유동제어구조물의 유동제어 특성에 대한 연구)

  • Boo, Sung-Youn
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.147-158
    • /
    • 1999
  • Warm or waste water discharged from offshore-based facilities often causes environmental polution as it is transported to coastal area due to tidal actions. In this research a floating-type current control structure is introduced in order to reduce the pollutant spreading in the coastal area. Effectivenss of the structure is investigated through the numerical experiment which is based on a 3-D finite difference multi-level scheme. The warm-water spreading in the bay is reduced when the draft of the structure increases and its optimum draft is found to be between 0.25h and 0.65h, where h is the water depth. The proposed structure is also tested in the Gohyun Bay and it ts proven to be applied to controllling pollutant spreading if its draft is properly chosen.

  • PDF

Analysis of Pollutant Loads and Physical Oceanographic Status at the Developing Region of Deep Sea Water in East Sea, Korea (동해 심층수 개발해역의 오염부하량 해석과 해황변동)

  • Lee, In-Cheol;Kim, Kyung-Hoi;Yoon, Han-Sam
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.340-345
    • /
    • 2003
  • This study, as a basic study for establishing a influence forecasting/estimating model when drain the deep sea water to the ocean after using it, carried out studies as follows; 1) estimating the amount of river discharge and pollutant loads inflowing into the developing region of deep sea water in East Sea, Korea 2) a field observation of tidal current, vertical distribution of water temperature and salinity, and 3-D numerical experiment of tidal current to analysis physical oceanographic status. The amount of river discharge flowing into the study area was estimated about $462.6{times}10^{3}m^{3}/day$ of daily mean in 2002 year. annual mean pollutant load of COD, TN and TP were estimated 7.02 ton-COD/day, 4.06 ton-TN/day and 0.39 ton/day, respectively. Field observation of tidal current results usually show about $20{\sim}40cm/sec$ of current velocity at the surface layer, it indicated a tendency that the current velocity decreases under 20cm/sec as the water depth increases. We could find a stratification within approximately the depth of 30m in field observation area, and the depth increases. We could find a stratification within approximately the depth of 30m in field observation area, and the differences of water temperature and salinity between the surface layer and bottom layer were about $18^{\circ}C$ and 0.8 psu, respectively. On the other hand, we found that there was a definite as the water mass of deep sea water about 34 psu of salinity.

  • PDF

Analysis of Pollutant Loads and Physical Oceanographic Status at the Developing Region of Deep Sea Water in the East Sea (동해 심층수 개발해역의 오염부하량 해석과 해동변동)

  • LEE IN-CHEOL;YOON BAN-SAM
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.14-19
    • /
    • 2005
  • As a basic study for establishing the input conditions of a forecasting/estimating model, used for deep-sea water drainage to the ocean, this study was carried out as follows: 1) estimating the amount of river discharge and pollutant loads into the developing region of deep sea water in the East Sea, Korea, 2) a field observation of tidal current, vertical water temperature, and salinity distribution, 3) 3-D numerical experiment of tidal current to analyze the physical oceanographic status. The amount of river discharge flowing into this study area was estimated at about $462.7{\times}103 m\^3/day$ of daily mean in 2002. Annual mean pollutant load of COD, TN, and TP were estimated at 7.02 ton-COD/day, 4.06 ton-TN/day, and 0.39 ton/day, respectively. Field observation of tidal current normally shows 20-40cm/sec of current velocity at the surface layer, and it decreases under 20cm/sec as the water depth increases. We also found a stratification condition at around 30m water depth in the observation area. The differences in water temperature and salinity, between the surface layer and the bottom layer, were about 18 C and 0.8 psu, respectively. On the other hand, we found a definite trend of 34 psu salinity water mass in the deep sea region.

Numerical Simulation of Tidal Current Patterns for Estuary Morphological Changes using Simple 2D Model (단순모델을 이용한 하구역 지형변화와 해수유동장 변화 수치모의)

  • Lee, Young-Bok;Yoon, Han-Sam;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.445-448
    • /
    • 2006
  • 본 연구는 기초적인 연구로 낙동강 하구역을 단순 사각형 만의 형상을 가진 지형으로 설정하고 내부 지형의 변화(수심 및 사주 면적)에 따른 해수유동장을 해수유동 수심적분모델로 구축하여 계산하였다. 계산된 유속장 결과를 바탕으로 내부 지형의 대표단면에서의 단면유량플럭스를 계산하여 상호 비교함으로써 하구역내 사주의 생성 및 발달(내부 지형 용적 변화)에 따른 하구역 입구부에서의 해수용적 변화(순환)의 정도를 평가하고자 하였다.

  • PDF