• 제목/요약/키워드: 2D LiDAR

검색결과 148건 처리시간 0.023초

ICP 계산속도 향상을 위한 빠른 Correspondence 매칭 방법 (A Fast Correspondence Matching for Iterative Closest Point Algorithm)

  • 신건희;최재희;김광기
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.373-380
    • /
    • 2022
  • This paper considers a method of fast correspondence matching for iterative closest point (ICP) algorithm. In robotics, the ICP algorithm and its variants have been widely used for pose estimation by finding the translation and rotation that best align two point clouds. In computational perspectives, the main difficulty is to find the correspondence point on the reference point cloud to each observed point. Jump-table-based correspondence matching is one of the methods for reducing computation time. This paper proposes a method that corrects errors in an existing jump-table-based correspondence matching algorithm. The criterion activating the use of jump-table is modified so that the correspondence matching can be applied to the situations, such as point-cloud registration problems with highly curved surfaces, for which the existing correspondence-matching method is non-applicable. For demonstration, both hardware and simulation experiments are performed. In a hardware experiment using Hokuyo-10LX LiDAR sensor, our new algorithm shows 100% correspondence matching accuracy and 88% decrease in computation time. Using the F1TENTH simulator, the proposed algorithm is tested for an autonomous driving scenario with 2D range-bearing point cloud data and also shows 100% correspondence matching accuracy.

공간 도메인 기반 캡슐화 방안 (Spatial domain-based encapsulation scheme)

  • 이상민;남귀중;이성배;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.818-820
    • /
    • 2022
  • 포인트 클라우드 데이터는 자율 주행 기술, 가상 현실 및 증강 현실에서 사용될 3차원 미디어 중 하나로 각광 받고 있다. 국제 표준화 기구인 MPEG(Moving Picture Expert Group)에서는 포인트 클라우드 데이터의 효율적인 압축을 위해 G-PCC(Geometry-based Point Cloud Compression) 및 V-PCC(Video-based Point Cloud Compression)의 표준화를 진행 중에 있다. 그 중, G-PCC는 본래 단일 프레임의 압축을 수행하는 정지 영상 압축 방식이지만, LiDAR(Light Detection And Ranging) 센서를 통해 획득된 동적 포인트 클라우드 프레임에 대한 압축의 필요성이 대두됨에 따라 G-PCC 그룹에서는 Inter-EM(Exploratory Model)을 신설하여 LiDAR 포인트 클라우드 프레임의 압축에 관한 연구를 시작하였다. Inter-EM의 압축 비트스트림은 G-PCC 비트스트림과 마찬가지로 효과적인 전송 및 소비를 위해 미디어 저장 포맷인 ISOBMFF(ISO-based Media File Format)으로 캡슐화될 수 있다. 이때, 포인트 클라우드 프레임들은 자율 주행 등의 서비스에 사용하기 위해 시간 도메인뿐만 아니라 공간 도메인을 기반으로도 소비될 수 있어야 하지만, 공간 도메인을 기반으로 콘텐츠를 임의 접근하여 소비하는 방식은 기존 2D 영상의 시간 도메인 기반 소비방식과 차이로 인해 기존에 논의된 G-PCC 캡슐화 방안만으로는 지원이 제한된다. 이에, 본 논문에서는 G-PCC 콘텐츠를 공간 도메인에 따라 소비하기 위한 ISOBMFF 캡슐화 방안에 대한 파일 포맷을 제안하고자 한다.

  • PDF

지상 라이다의 점군 데이터를 이용한 2차원 및 3차원 실내 GIS 도면 반자동 구축 기법 개발 (Semi-Automatic Method for Constructing 2D and 3D Indoor GIS Maps based on Point Clouds from Terrestrial LiDAR)

  • 홍성철;정재훈;김상민;홍승환;허준
    • 대한공간정보학회지
    • /
    • 제21권2호
    • /
    • pp.99-105
    • /
    • 2013
  • 도시의 발전 및 성장으로 인해 건물은 고층화, 대형화, 복잡화 되고 있으며, 효율적인 공간정보의 활용 및 공유를 위해 실내외 GIS의 중요성은 증가되고 있다. 하지만 도면 생성기술은 지형 및 도시의 2차원 및 3차원 도면 생성에 대해서 주로 선행되었으며, 건물 실내공간의 도면 구축 기술에 대한 연구는 미비한 실정이다. 본 연구에서는 지상라이다로부터 취득된 실내 점군데이터를 이용한 2차원 및 3차원 실내 도면 반자동 구축 기법을 제안하였다. 제안한 기법은 전처리, 2차원 도면생성, 3차원 도면생성 단계로 이루어진다. 전처리 단계는 실내 공간의 높이를 측정하고 점군데이터의 노이즈를 식별한다. 2차원 도면 생성 단계에서는 외곽선 추출격자와 정제과정을 이용하여 평면도를 생성한다. 3차원 도면 생성 단계에서는 전처리 과정에서 측정된 높이와 평면도를 이용하여 3차원 와이어프레임 모델을 생성한다. 전처리 과정에서 식별된 노이즈 데이터는 3차원 와이어 프레임 모델과 함께 3차원 실내 도면의 세부 모델링에 이용된다. 제안한 기법은 실내 복도를 측량한 점군데이터에 적용하여 결과를 확인하였으며, 향후 실내 GIS 구축을 위한 2차원 및 3차원 도면 생성에 활용될 수 있을 것으로 기대된다.

Comparison of 3D Reconstruction Methods to Create 3D Indoor Models with Different LODs

  • Hong, Sungchul;Choi, Hyunsang
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.674-675
    • /
    • 2015
  • A 3D indoor model becomes an indiscernible component of BIM (Building Information Modeling) and GIS (Geographic Information System). However, a huge amount of time and human resources are inevitable for collecting spatial measurements and creating such a 3D indoor model. Also, a varied forms of 3D indoor models exist depending on their purpose of use. Thus, in this study, three different 3D indoor models are defined as 1) omnidirectional images, 2) a 3D realistic model, and 3) 3D indoor as-built model. A series of reconstruction methods is then introduced to construct each type of 3D indoor models: they are an omnidirectional image acquisition method, a hybrid surveying method, and a terrestrial LiDAR-based method. The reconstruction methods are applied to a large and complex atrium, and their 3D modeling results are compared and analyzed.

  • PDF

토석류 피해지 분석을 통한 RAMMS모형과 FLO-2D모형의 비교 (Comparsion Between RAMMS And FLO-2D through Danaged by Debris Flow Analysis)

  • 탁원준;전계원;전병희;이호진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.112-112
    • /
    • 2015
  • 우리나라는 산지가 국토의 64%이상으로 토석류 등 지반재해의 위험성에 노출되어 있다. 2011년 7월 우면산 토석류, 춘천시 펜션 토석류 등 규모가 큰 토석류 재해가 일어나며 문제가 되고 있다. 이에 본 연구에서는 토석류 피해지역을 연구지역으로 선정하고 지상 LiDAR스캔을 통한 현장조사로 연구지역과 유사한 매개변수 값을 산정하고 정밀도가 높은 지형자료를 생성하여 토석류 해석에 대한 정확도를 높혔다. 토석류 해석프로그램은 국내에서 토석류 해석에 많이 사용되는 FLO-2D와 아직 국내에서는 사용 빈도가 높지는 않지만 국외 연구사례에서 사용 빈도가 높은 모델 중 RAMMS 모형을 선정하여 토석류 피해가 발생한 동일 지역에 두 모형을 적용하고 그 적용성을 검토하였다.

  • PDF

디지털 3D 인프라 구축을 위한 대규모 CityGML 객체 생성 방법 (Building Large-scale CityGML Feature for Digital 3D Infrastructure)

  • 장한메;김현준;강혜영
    • 한국측량학회지
    • /
    • 제39권3호
    • /
    • pp.187-201
    • /
    • 2021
  • 최근 도시에서 생산되는 수많은 디지털 데이터를 저장, 운용, 분석하기 위한 3차원 도시 공간정보 인프라에 대한 수요가 증가하고 있다. CityGML은 OGC (Open Geospatial Consortium)의 3차원 공간정보 데이터 표준으로서 도시 데이터의 교환 및 속성 표현에 강점을 가지고 있으며, 최근 싱가폴, 뉴욕 등 몇몇 도시를 중심으로 CityGML 형식의 3차원 도시공간 데이터를 구축한 사례가 등장하였다. 그러나 현재 CityGML 데이터의 제작 및 편집을 위한 생태계는 sketchup이나 3d max 등 3차원 데이터 구축에 활용되고 있는 상용프로그램과 비교할 때 완성도가 부족하여 대규모로 CityGML 데이터를 구축하는 데 한계가 있다. 따라서 본 연구에서는 항공 LiDAR (Light Detection and Ranging) 나 RGB (Red Green Blue) 카메라를 이용하여 신속하고 자동으로 제작되는 3D mesh 데이터 및 2차원 폴리곤을 활용하여 3차원 공간정보 표준인 CityGML 데이터를 구축하는 방법을 제시하였다. 데이터 구축과정에서는 각 객체가 다양한 CityGML LoD (Level of Detail)로 표현될 수 있도록 원본 3D mesh 데이터를 변형하였고 공간정보로서 활용도를 높이기 위해 2차원 공간정보 데이터로부터 추출한 속성정보를 보조적으로 활용하였다. 본 연구에서 제작한 도시 3D 객체는 CityGML 건물, 교량, 도시시설물, 도로, 터널이며 객체별 데이터 변환, 속성 구축 방법을 제시하고 가시화 및 유효성 검정을 진행하였다.

Mobile Mapping System Point Cloud를 활용한 도로주변 시설물 DB 구축 및 위치 정확도 평가 (Evaluating a Positioning Accuracy of Roadside Facilities DB Constructed from Mobile Mapping System Point Cloud)

  • 김재학;이홍술;노수래;이동하
    • 한국지리정보학회지
    • /
    • 제22권3호
    • /
    • pp.99-106
    • /
    • 2019
  • 최근 자율주행 분야가 4차 산업혁명 시대에 맞이하여 주요한 기술분야로 각광받고 있다. 자율주행 분야는 4차 산업의 핵심 기술의 집합체라고 볼 수 있는데, 이 중 자율주행 지원을 위한 정밀도로 지도 및 도로시설물 구축을 위한 DB 분야가 필수적인 부분이다. 기존 2차원 자료형식으로 제작되고 관리되던 지도 DB가 3차원으로 급격히 변화하고 있으며, 더불어 이러한 정밀도로 지도를 구축을 위한 핵심기술로 Mobile Mapping System(MMS)가 활발히 이용되고 있다. 특히 MSS에서 획득되는 다양한 자료 중에서 LiDAR를 통해 취득되는 정밀 Point Cloud는 정확한 위치 정보를 포함하고 있어, 정밀도로 지도 구축 및 도로시설물 관리 등을 위한 다양한 관련 DB 구축에 활용되고 있다. 하지만 현재는 정밀도로 지도 제작 시 3D 모델링을 위한 기반 데이터로만 활용되는 것으로만 국한되어 그 사용 범위가 넓지 않은 문제가 있다. 본 연구에서는 MMS 취득자료의 활용성을 높이기 위하여 MMS LiDAR Point Cloud를 활용하여 도로 주변 시설물을 추출하고, 그 위치를 현장조사 성과와 중첩하여 비교 분석하여 그 위치 정확도에 기준한 도로시설물 분야 활용성을 확인하고자 하였다. Point Cloud로부터 전신주와 통신지주 DB를 구축하고 도로명주소기본도와 위치 비교를 수행한 결과, Point Cloud에서 추출한 시설물 DB의 위치 정확도는 도로명주소기본도 보다 높은 것으로 확인되었다. 이를 통해 MMS Point Cloud 자료를 도로시설물 관리 분야에 충분히 활용하는 것이 가능하며, 추후 이를 통해 도로시설물 지도 확대 구축하고, 도로대장 관리 등에 적용하는 연구가 필요 할 것으로 판단된다.

토양 손실 평가에 의한 식생매트의 허용 소류력 결정 (Determination of Permissible Shear Stresses on Vegetation Mats by Soil Loss Evaluation)

  • 이두한;이동섭;김명환
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.5956-5963
    • /
    • 2013
  • 친환경 하천사업의 활성화로 식생매트의 사용은 증가하고 있으나 수리적 안정성에 대한 평가기법은 제시되지 않은 실정이다. 본 연구는 호안용 식생매트 제품의 객관적인 수리안정성 시험 기법 개발을 위해 수행하였다. 이를 위해서 식생매트 2종에 대한 실규모 실험을 수행하여 수리량을 측정하고 분석하여 작용 소류력을 계산하였다. 작용 소류력에 대한 토양손실평가를 위하여 지상라이다에 의한 측량을 수행하고 실험 전후의 하상고 변화를 평가하여 토양손실지수(CSLI)를 산정하였으며, 작용 소류력과 함께 도시하여 허용 소류력을 정량적으로 평가하였다. 하상고에 대한 정밀 측량 결과 분석에 의해서 식생매트가 안정한 경우에는 하상 변동이 국부적으로 제한되나, 불안정으로 판정되는 경우에는 식생매트 하부에서 비교적 큰 규모의 하상 변동이 발생하며 이는 자연 하상의 거동과 유사함을 확인하였다. 이상의 연구를 통해서 ASTM D 6040에 의한 식생매트의 허용 소류력 평가가 파괴 메카니즘 및 토양손실판정 기준에서 유효함을 확인할 수 있었다.

A Survey for 3D Object Detection Algorithms from Images

  • Lee, Han-Lim;Kim, Ye-ji;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제9권3호
    • /
    • pp.183-190
    • /
    • 2022
  • Image-based 3D object detection is one of the important and difficult problems in autonomous driving and robotics, and aims to find and represent the location, dimension and orientation of the object of interest. It generates three dimensional (3D) bounding boxes with only 2D images obtained from cameras, so there is no need for devices that provide accurate depth information such as LiDAR or Radar. Image-based methods can be divided into three main categories: monocular, stereo, and multi-view 3D object detection. In this paper, we investigate the recent state-of-the-art models of the above three categories. In the multi-view 3D object detection, which appeared together with the release of the new benchmark datasets, NuScenes and Waymo, we discuss the differences from the existing monocular and stereo methods. Also, we analyze their performance and discuss the advantages and disadvantages of them. Finally, we conclude the remaining challenges and a future direction in this field.

Building Dataset of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Junhyuk Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.21-30
    • /
    • 2024
  • 본 논문에서는 자율협력주행 인프라를 위해 제작된 8가지 센서 전용 시설물들에 대해 라이다로 취득한 포인트 클라우드 데이터로부터 시설물들의 특징을 추출하여 샘플 데이터셋으로 구축하는 방법을 제안한다. 고휘도 반사지가 부착된 8가지 센서 전용 시설물들과 데이터 취득 시스템을 개발했고, 취득된 포인트 클라우드 데이터로부터 일정한 측정 거리 내에 위치한 시설물들의 특징을 추출하기 위해 포인트 대상의 DBSCAN 방법과 반사강도 대상의 OTSU 방법을 응용하여 추려낸 포인트들에 원통형 투영법을 적용했다. 3차원 포인트 좌표, 2차원 투영 좌표, 그리고 반사강도 등을 해당 시설물의 특징으로 설정했고, 정답 레이블과 함께 데이터셋으로 제작했다. 라이다로 취득한 데이터를 기반으로 구축된 시설물 데이터셋의 효용 가능성을 확인하기 위해서 기본적인 CNN 모델을 선정하여 학습 후 테스트를 진행하여 대략 90% 이상의 정확도를 보여 시설물 인식 가능성을 확인했다. 지속적인 실험을 통해 제시한 데이터셋 구축을 위한 특징 추출 알고리즘의 개선 및 성능 향상과 더불어 이에 적합한 자율협력주행을 위한 센서 전용 시설물을 인식할 수 있는 전용 모델을 개발할 예정이다.